

Design Patterns for
Embedded Systems in C

This page intentionally left blank

Design Patterns for
Embedded Systems in C
An Embedded Software Engineering Toolkit

Bruce Powel Douglass, PhD

AMSTERDAM •BOSTON •HEIDELBERG •LONDON

NEW YORK •OXFORD •PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY •TOKYO
Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP, UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First edition 2011

Copyright © 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online by visiting
the Elsevier web site at http://www.elsevier.com/locate/permissions, and selecting Obtaining
permission to use Elsevier material.

Notice:
No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material herein.
Because of rapid advances in the medical sciences, in particular, independent verification
of diagnoses and drug dosages should be made.

Library of Congress Cataloging-in-Publication Data
Douglass, Bruce Powel.
Design patterns for embedded C: an embedded software engineering toolkit / Bruce Powel Douglass – 1st ed.
p. cm.

Includes index.
ISBN 978-1-85617-707-8
1. C (Computer program language) 2. Embedded computer systems–Programming. 3. Software patterns. I. Title.
QA76.73.C15D685 2011
005.13’3–dc22

2010027721

A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

For information on all Newnes publications
visit our website at books.elsevier.com

ISBN: 978-1-85617-707-8

Printed and bound in USA

13 12 11 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

Dedication
This book is dedicated to my elder son Scott, who graduated with an

almost-4.0 average in physics and is going on to graduate school – nicely
done Scott!

This page intentionally left blank

Contents

Preface .. xv

Acknowledgements .. xvii

About the Author ...xviii

Chapter 1 What Is Embedded Programming? .. 1
1.1 What’s Special About Embedded Systems? .. 1

1.1.1 Embedded Design Constraints... 3
1.1.2 The Embedded Tool Chain .. 4
1.1.3 OS, RTOS, or Bareback? ... 5
1.1.4 Embedded Middleware .. 6
1.1.5 Codevelopment with Hardware ... 7
1.1.6 Debugging and Testing .. 8

1.2 OO or Structured – It’s Your Choice... 9
1.2.1 Classes.. 10
1.2.2 Objects ... 13
1.2.3 Polymorphism and Virtual Functions .. 14
1.2.4 Subclassing... 15
1.2.5 Finite State Machines... 25

1.3 What Did We Learn? ... 33

Chapter 2 Embedded Programming with The HarmonyTM for Embedded
RealTime Process.. 35

2.1 Basic Elements of the Harmony Process... 36
2.1.1 A Quick Overview of the Development Workflow................................. 36
2.1.2 What Is a Design Pattern? ... 44
2.1.3 Basic Structure of Design Patterns .. 45
2.1.4 How to Read Design Patterns in This Book ... 46
2.1.5 Using Design Patterns in Development... 47
2.1.6 Observer Pattern... 66

2.2 The Approach .. 77
2.3 What’s Coming Up .. 78

Chapter 3 Design Patterns for Accessing Hardware....................................... 79
3.1 Basic Hardware Access Concepts.. 81

vii

3.2 Hardware Proxy Pattern... 85
3.2.1 Abstract .. 85
3.2.2 Problem .. 86
3.2.3 Pattern Structure... 86
3.2.4 Collaboration Roles ... 87
3.2.5 Consequences... 88
3.2.6 Implementation Strategies.. 89
3.2.7 Related Patterns.. 89
3.2.8 Example ... 89

3.3 Hardware Adapter Pattern.. 96
3.3.1 Abstract .. 96
3.3.2 Problem .. 96
3.3.3 Pattern Structure... 96
3.3.4 Collaboration Roles ... 96
3.3.5 Consequences... 97
3.3.6 Implementation Strategies.. 98
3.3.7 Related Patterns.. 98
3.3.8 Example ... 98

3.4 Mediator Pattern... 100
3.4.1 Abstract .. 100
3.4.2 Problem .. 100
3.4.3 Pattern Structure... 101
3.4.4 Collaboration Roles ... 101
3.4.5 Consequences... 102
3.4.6 Implementation Strategies.. 102
3.4.7 Related Patterns.. 102
3.4.8 Example ... 103

3.5 Observer Pattern..111
3.5.1 Abstract ...111
3.5.2 Problem ...112
3.5.3 Pattern Structure..112
3.5.4 Collaboration Roles ..112
3.5.5 Consequences..114
3.5.6 Implementation Strategies...114
3.5.7 Related Patterns...115
3.5.8 Example ..115

3.6 Debouncing Pattern.. 122
3.6.1 Abstract .. 123
3.6.2 Problem .. 123
3.6.3 Pattern Structure... 123
3.6.4 Collaboration Roles ... 123
3.6.5 Consequences... 125

viii

Contents

3.6.6 Implementation Strategies.. 125
3.6.7 Related Patterns.. 126
3.6.8 Example ... 126

3.7 Interrupt Pattern ... 130
3.7.1 Abstract .. 130
3.7.2 Problem .. 130
3.7.3 Pattern Structure... 131
3.7.4 Collaboration Roles ... 131
3.7.5 Consequences... 132
3.7.6 Implementation Strategies.. 134
3.7.7 Related Patterns.. 135
3.7.8 Example ... 135

3.8 Polling Pattern.. 138
3.8.1 Abstract .. 138
3.8.2 Problem .. 138
3.8.3 Pattern Structure... 138
3.8.4 Collaboration Roles ... 138
3.8.5 Consequences... 141
3.8.6 Implementation Strategies.. 141
3.8.7 Related Patterns.. 142
3.8.8 Example ... 142

3.9 So, What Did We Learn?... 147

Chapter 4 Design Patterns for Embedding Concurrency and Resource
Management .. 149

4.1 Basic Concurrency Concepts ... 152
4.1.1 Identifying Tasks.. 160
4.1.2 Concurrency in the UML... 161
4.1.3 Real-Time Operating Systems ... 163

Scheduling Patterns... 164
4.2 Cyclic Executive Pattern.. 164

4.2.1 Abstract .. 165
4.2.2 Problem .. 165
4.2.3 Pattern Structure... 165
4.2.4 Collaboration Roles ... 165
4.2.5 ConcreteCEThread ... 166
4.2.6 Consequences... 167
4.2.7 Implementation Strategies.. 167
4.2.8 Related Patterns.. 167
4.2.9 Example ... 167

4.3 Static Priority Pattern ... 170
4.3.1 Abstract .. 170
4.3.2 Problem .. 171

ix

Contents

4.3.3 Pattern Structure... 171
4.3.4 Collaboration Roles ... 172
4.3.5 Consequences... 173
4.3.6 Implementation Strategies.. 173
4.3.7 Related Patterns.. 174
4.3.8 Example ... 175

Task Coordination Patterns ... 182
4.4 Critical Region Pattern... 182

4.4.1 Abstract .. 182
4.4.2 Problem .. 182
4.4.3 Pattern Structure... 182
4.4.4 Collaboration Roles ... 183
4.4.5 Consequences... 184
4.4.6 Implementation Strategies.. 184
4.4.7 Related Patterns.. 184
4.4.8 Example ... 184

4.5 Guarded Call Pattern.. 190
4.5.1 Abstract .. 190
4.5.2 Problem .. 190
4.5.3 Pattern Structure... 190
4.5.4 Collaboration Roles ... 191
4.5.5 Consequences... 192
4.5.6 Implementation Strategies.. 192
4.5.7 Related Patterns.. 193
4.5.8 Example ... 194

4.6 Queuing Pattern ... 207
4.6.1 Abstract .. 207
4.6.2 Problem .. 207
4.6.3 Pattern Structure... 208
4.6.4 Collaboration Roles ... 208
4.6.5 Consequences... 209
4.6.6 Implementation Strategies.. 210
4.6.7 Related Patterns.. 210
4.6.8 Example ... 210

4.7 Rendezvous Pattern.. 224
4.7.1 Abstract .. 225
4.7.2 Problem .. 226
4.7.3 Pattern Structure... 226
4.7.4 Collaboration Roles ... 226
4.7.5 Consequences... 227
4.7.6 Implementation Strategies.. 228

x

Contents

4.7.7 Related Patterns.. 228
4.7.8 Example ... 228

Deadlock Avoidance Patterns ... 231
4.8 Simultaneous Locking Pattern ... 232

4.8.1 Abstract .. 232
4.8.2 Problem .. 233
4.8.3 Pattern Structure... 233
4.8.4 Collaboration Roles ... 234
4.8.5 Consequences... 236
4.8.6 Implementation Strategies.. 236
4.8.7 Related Patterns.. 236
4.8.8 Example ... 236

4.9 Ordered Locking .. 242
4.9.1 Abstract .. 242
4.9.2 Problem .. 243
4.9.3 Pattern Structure... 243
4.9.4 Collaboration Roles ... 244
4.9.5 Consequences... 247
4.9.6 Implementation Strategies.. 248
4.9.7 Related Patterns.. 248
4.9.8 Example ... 248

4.10 So, What Have We Learned?... 255

Chapter 5 Design Patterns for State Machines.. 257
5.1 Oh Behave! .. 259
5.2 Basic State Machine Concepts... 261

5.2.1 OR-States ... 263
5.2.2 AND-States .. 265
5.2.3 Special Stuff: Timeouts, Conditionals, and More.................................. 267
5.2.4 Synchronous versus Asynchronous? ... 270

5.3 Single Event Receptor Pattern ... 274
5.3.1 Abstract .. 274
5.3.2 Problem .. 274
5.3.3 Pattern Structure... 274
5.3.4 Collaboration Roles ... 275
5.3.5 Consequences... 278
5.3.6 Implementation Strategies.. 278
5.3.7 Related Patterns.. 278
5.3.8 Example ... 278

5.4 Multiple Event Receptor Pattern.. 287
5.4.1 Abstract .. 287
5.4.2 Problem .. 287

xi

Contents

5.4.3 Pattern Structure... 288
5.4.4 Collaboration Roles ... 288
5.4.5 Consequences... 290
5.4.6 Implementation Strategies.. 290
5.4.7 Related Patterns.. 290
5.4.8 Example ... 290

5.5 State Table Pattern ... 296
5.5.1 Abstract .. 296
5.5.2 Problem .. 296
5.5.3 Pattern Structure... 296
5.5.4 Collaboration Roles ... 297
5.5.5 Consequences... 299
5.5.6 Implementation Strategies.. 299
5.5.7 Related Patterns.. 299
5.5.8 Example ... 300

5.6 State Pattern ... 308
5.6.1 Abstract .. 308
5.6.2 Problem .. 308
5.6.3 Pattern Structure... 308
5.6.4 Collaboration Roles ... 310
5.6.5 Consequences... 312
5.6.6 Implementation Strategies.. 313
5.6.7 Related Patterns.. 313
5.6.8 Example ... 314

5.7 AND-States .. 327
5.8 Decomposed AND-State Pattern ... 330

5.8.1 Abstract .. 331
5.8.2 Problem .. 331
5.8.3 Pattern Structure... 331
5.8.4 Collaboration Roles ... 331
5.8.5 Consequences... 333
5.8.6 Implementation Strategies.. 333
5.8.7 Related Patterns.. 334
5.8.8 Example ... 334

5.9 OK, What Have We Learned? ... 356

Chapter 6 Safety and Reliability Patterns ... 357
6.1 A Little Bit About Safety and Reliability.. 359

6.1.1 Safety and Reliability Related Faults .. 360
6.1.2 Achieving Safety and Reliability ... 361

6.2 One’s Complement Pattern .. 362
6.2.1 Abstract .. 362
6.2.2 Problem .. 362

xii

Contents

6.2.3 Pattern Structure... 362
6.2.4 Collaboration Roles ... 362
6.2.5 Consequences... 363
6.2.6 Implementation Strategies.. 363
6.2.7 Related Patterns.. 363
6.2.8 Example ... 363

6.3 CRC Pattern ... 367
6.3.1 Abstract .. 367
6.3.2 Problem .. 367
6.3.3 Pattern Structure... 368
6.3.4 Collaboration Roles ... 368
6.3.5 Consequences... 369
6.3.6 Implementation Strategies.. 369
6.3.7 Related Patterns.. 369
6.3.8 Example ... 369

6.4 Smart Data Pattern ... 380
6.4.1 Abstract .. 380
6.4.2 Problem .. 381
6.4.3 Pattern Structure... 381
6.4.4 Collaboration Roles ... 382
6.4.5 Consequences... 382
6.4.6 Implementation Strategies.. 383
6.4.7 Related Patterns.. 383
6.4.8 Example ... 383

6.5 Channel Pattern.. 395
6.5.1 Abstract .. 395
6.5.2 Problem .. 395
6.5.3 Pattern Structure... 395
6.5.4 Collaboration Roles ... 395
6.5.5 Consequences... 396
6.5.6 Implementation Strategies.. 397
6.5.7 Related Patterns.. 397
6.5.8 Example ... 397

6.6 Protected Single Channel Pattern .. 402
6.6.1 Abstract .. 402
6.6.2 Problem .. 402
6.6.3 Pattern Structure... 403
6.6.4 Collaboration Roles ... 404
6.6.5 Implementation Strategies.. 405
6.6.6 Related Patterns.. 405
6.6.7 Example ... 405

xiii

Contents

6.7 Dual Channel Pattern ... 413
6.7.1 Abstract .. 413
6.7.2 Problem .. 414
6.7.3 Pattern Structure... 414
6.7.4 Collaboration Roles ... 414
6.7.5 Consequences... 417
6.7.6 Implementation Strategies.. 417
6.7.7 Related Patterns.. 417
6.7.8 Example ... 421

6.8 Summary .. 422

Appendix A UML Notation.. 425
1.1 Class Diagram.. 425

1.1.1 Semantic Elements ... 425
1.2 Sequence Diagram ... 429

1.2.1 Semantic Elements ... 429
1.3 State Diagram... 430

1.3.1 Semantic Elements ... 430

Index ... 437

xiv

Contents

Preface

The predominate language for the development of embedded systems is clearly C. Other
languages certainly have their allure, but over 80% of all embedded systems are developed
in this classic language. Many of the advances in the industry assume the use of object-oriented
languages, web clients, and technologies that are either unavailable in the bare-metal develop-
ment environment of embedded systems, or are too memory or resource intensive to be
effectively deployed.

Design patterns are one of these profitable areas of advancement. A design pattern is a
generalized solution to a recurring problem. Design patterns allow several advantages. First,
they allow users to reason about solutions in a more abstract way and to codify their important
properties. Since all design patterns are about optimization of some set of design criteria at the
expense of others, different design patterns might address the same operational context but
provide different benefits and costs. By reifying design patterns as a basic concept, we can
reason about the best ways to optimize our systems and the technologies and approaches to
accomplish that.

Secondly, design patterns allow us to reuse solutions that have proven themselves to be
effective in other, similar circumstances. This is certainly a larger scope of reuse than reusing
lines of code or individual functions. Because design patterns can be analyzed for their
performance and optimization properties, we can select the best patterns for our particular
problems.

Additionally, design patterns give us a larger set of reusable building blocks with which to
describe our system. If you say the system uses a “symmetric deployment pattern with RMS
multitasking scheduling and a triple modular redundancy approach” that sums up a significant
portion of the architectural optimization decisions about your system. Design patterns make our
vocabulary larger and more expressive.

Lastly, design patterns provide a unit of reference. If you Google “design patterns” you get
over 3,000,000 hits. If you search the Amazon book department online, you get a list of 793
books. There is a great deal of work that goes on in the area of defining and using design
patterns, so we are exposed to an enormous wealth of reusable and proven solutions from which
we can select, mix, and bring to bear appropriate solutions.

xv

This book brings the power of design patterns to the embedded C developer. Where
appropriate, we use an object-based implementation policy with code examples to see how
the patterns are implemented and used. The patterns are divided up into different areas of
relevance to the embedded developer, including:

• Hardware access
• Concurrency
• State machine implementation
• Safety and reliability

In each area, different patterns are provided that address common concerns.

Audience
The book is oriented toward the practicing professional software developer and the computer
science major, in the junior or senior year. It focuses on practical experience by solving posed
problems from the context of the examples. The book assumes a reasonable proficiency in the
C programming language. UML is used to graphically represent the structure and behavior of
the patterns, but code examples are given to clearly show the design and implementation
concepts.

Goals
The goal of this book is to provide a toolbox for the embedded C developer and to train him

or her on the appropriate use of those tools. An agile development workflow, called the
Harmony Process™ (developed by the author) is discussed in Chapter 2 to provide a process
framework in which patterns have a definite role. However, the use of patterns transcends any
individual process, no matter how coolly named.
By the time you’ve reached the end of the book, you will hopefully have the expertise to

tackle the real design issues that you face in your life as a professional developer of embedded
systems.

Bruce Powel Douglass, Ph.D.

xvi

Preface

Acknowledgements

I want to thank my wife Sarah for being supportive even though I work too much, and my great
kids – Scott, Blake, and Tamera – for being awesome even though I work too much.

xvii

About the Author

Bruce Powel Douglass was raised by wolves in the Oregon wilderness. He taught himself to
read at age 3 and learned calculus before age 12. He dropped out of school when he was 14 and
traveled around the U.S. for a few years before entering the University of Oregon as a
mathematics major. He eventually received his M.S. in exercise physiology from the University
of Oregon and his Ph.D. in neurophysiology from the USD Medical School, where he
developed a branch of mathematics called autocorrelative factor analysis for studying informa-
tion processing in multicellular biological neural systems.
Bruce has worked as a software developer in real-time systems for over 30 years and is a

well-known speaker, author, and consultant in the area of real-time embedded systems and
systems engineering. He is on the Advisory Board of the Embedded Systems conference and
has taught courses in software estimation and scheduling, project management, object-
oriented analysis and design, communications protocols, finite state machines, design
patterns, and safety-critical systems design. He develops and teaches courses and consults
in real-time object-oriented analysis and design and project management and has done so for
many years. He has authored articles for a many journals and periodicals, especially in the
real-time domain.
He is the Chief Evangelist1 for IBM Rational, a leading producer of tools for real-time

systems development, including the widely-used Rhapsody modeling tool. Bruce worked with
other UML partners on the specification of the UML. He is a former co-chair of the Object
Management Group’s Real-Time Analysis and Design Working Group. He is the author of
several other books on software, including

• Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and
Patterns (Addison-Wesley, 1999)

• Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems (Addison-
Wesley, 2002)

• Real-Time UML Third Edition: Advances in the UML for Real-Time Systems (Addison-
Wesley, 2004)

1 Being a Chief Evangelist is much like being a Chief Scientist, except for the burning bushes and stone tablets.

xviii

• Real-Time UML Workshop for Embedded Systems (Elsevier, 2007)
• Real-Time Agility (Addison-Wesley, 2009)

and several others, including a short textbook on table tennis.
Bruce enjoys classical music and has played classical guitar professionally. He has competed

in several sports, including table tennis, bicycle racing, running, triathlons, and full-contact Tae
Kwon Do, although he currently only fights inanimate objects that don’t hit back.

xix

About the Author

This page intentionally left blank

CHAPTER 1

What Is Embedded Programming?

Chapter Outline
1.1 What’s Special About Embedded Systems? 1

1.1.1 Embedded Design Constraints 3

1.1.2 The Embedded Tool Chain 4

1.1.3 OS, RTOS, or Bareback? 5

1.1.4 Embedded Middleware 6

1.1.5 Codevelopment with Hardware 7

1.1.6 Debugging and Testing 8

1.2 OO or Structured – It’s Your Choice 9

1.2.1 Classes 10

1.2.2 Objects 13

1.2.3 Polymorphism and Virtual Functions 14

1.2.4 Subclassing 15

1.2.5 Finite State Machines 25

1.3 What Did We Learn? 33

What you will learn

• Basics of embedded systems

• OO versus structured programming

• Implementing classes, inheritance, and state machines in C

1.1 What’s Special About Embedded Systems?
This book focuses solely on embedded systems development. In doing so, it is drawing a
distinction between “embedded” systems and “others.” Before we get into the depth of the
discussion, we need to understand what this difference is so that we can appreciate what it
forebodes with respect to the patterns and technologies we will use to develop embedded
systems.

I define an embedded system as “a computerized system dedicated to performing a specific set
of real-world functions, rather than to providing a generalized computing environment.”
Clearly, this is a broad categorization that includes tiny 8-bit computers embedded in cardiac
pacemakers, linked 32-bit computers controlling avionics, communications, fire control for

Design Patterns for Embedded Systems in C
DOI:10.1016/B978-1-85617-707-8.00001-7
Copyright © 2011 Elsevier Inc. 1

2	 Chapter 1

aircraft, and wide-area networks composed of hundreds of powerful computer systems for
battlefield management in C4ISR (Command, Control, Communications, Computers, Intelli
gence, Surveillance, and Reconnaissance) systems. Many embedded systems have no disks,
human interface, and barely any memory but the scope of the embedded systems market is far
broader than such simple devices.

Embedded systems are everywhere:

•	 In the medical field, embedded systems include implantable devices (e.g., cardiac
pacemakers, defibrillators, and insulin pumps), monitoring equipment (e.g., ECG/EKG
monitors, blood gas monitors, blood pressure monitors, EMG monitors), imaging systems
(e.g., CT, SPECT, PET, TEM, and x-ray imagers), and therapy delivery devices (e.g.,
patient ventilator, drug vaporizers, and infusion pumps).

•	 In the telecom market, there are devices ranging from cell phones, switching systems,
routers, modems, and satellites.

•	 In automotive environments, embedded systems optimize engine combustion, manage
power delivery in transmissions, monitor sensor data, control anti-lock braking, provide
security, and offer infotainment services such as CD and DVD players, and GPS routing (in
some locations, they can offer radar and laser detection and even active radar and laser
countermeasures).

•	 In the office, embedded systems manage phones, printers, copies, fax machines, lights,
digital projectors, security systems, and fire detection and suppression systems.

•	 In the home, examples include ovens, televisions, radios, washing machines, and even some
vacuum cleaners.

Embedded systems already control, augment, monitor, and manage virtually every high-tech
device we have from televisions to trains to factory automation, and their use is on the rise.

An important subset of embedded systems are real-time systems. Many people have the
mistaken impression that “real time” means “real fast” but that is not true. A real-time system is
one in which timeliness constraints must be satisfied for system correctness. A common, if
simplistic, categorization of real-time systems is into two groups. “Hard” real-time systems are
ones in which timeliness constraints are modeled as deadlines, points in time by which the
execution of specific actions are required to be complete. “Soft” real-time systems are those that
are not “hard”1; that is, some other (usually stochastic) measure than deadlines is used to
determine timeliness. This may include average throughput, average execution time, maximum
burst length, or some other measure. All systems may be modeled as hard real-time systems,
but this often results in “over-designing” the system to be faster or have more available
resources than is necessary, raising the recurring cost (approximately “manufacturing cost”) of
the system.

1 Although, as the saying goes, “Hard real-time systems are hard. Soft real-time systems are harder.”

What Is Embedded Programming? 3

Even though all systems may be modeled as hard real-time systems, in actual fact, most are
not. If the response is occasionally delayed or even an entire input event is missed, most
systems will continue to function properly. The primary reason for modeling real-time
systems as “hard” is because it eases the assurance of the system’s timeliness through
mathematical analysis.

1.1.1 Embedded Design Constraints

From the inside, one of the most striking characteristics of embedded systems is severity of
their constraints. Unlike writing software for a general-purpose computer, an embedded system
is usually shipped already integrated with all the hardware it needs. The hardware platform is
not usually user-extensible, so resources such as memory, power, cooling, or computing power
contribute to the per-unit cost (known as recurring cost). To maintain profitability, there is
almost always tremendous pressure on the developer to minimize the use of such hardware
resources. This means that embedded systems often require additional optimization efforts far
beyond that required for desktop applications.

Beyond the need to minimize hardware, performance concerns are often critical to the success
of a system. There are many aspects to performance, and different systems value these aspects
differently. In some systems, throughput is a critical criterion. Throughput is normally mea
sured in terms of the number of transactions, samples, connections, or messages that can be
processed per unit time. In other systems, handling each request as quickly as possible is more
important, a quality known as responsiveness, usually captured as a worst case execution time.
Other systems value predictability of performance over maximum throughput or responsive
ness. Predictability is usually measured as occurring within a range or as being drawn from a
probability density function.

Reliability, robustness, and safety are other kinds of constraints levied on embedded systems.
The reliability of a system is a (stochastic) measure of the likelihood that the system will deliver
the correct functionality. Robustness refers to the ability of a system to deliver services properly
when its preconditions (such as operating conditions or input data rates) are violated. Safety
denotes the level of risk of a system, that is, the likelihood that using the system will result in an
accident or loss. These concerns often require additional hardware and software measures to
maintain the operation of the system within acceptable limits. For example, most
embedded systems have a power on self-test (POST) as well as a periodic or continuous
built-in test (BIT).

Collectively, these constraints on the system are known as the qualities of services (QoS)
provided by the system. In addition to the various QoS constraints, to reduce recurring
cost, it is common to create custom hardware that requires specialized device driver
software.

4 Chapter 1

1.1.2 The Embedded Tool Chain

Most embedded systems are created on a different system (the “host”) than they execute on (the
“target”). This has a number of effects on the developer and the tools used in the creation of
embedded systems. The most obvious such tool is the cross-compiler. This is a compiler that
runs on the host but creates executable code that runs on a different computer and operating
environment. Many real-time operating systems (RTOSs) provide their own proprietary com
pilers or provide customizations for open-source compilers such as GCC (Gnu Compiler
Collection)2.

A linker is a program that combines a set of executable codes together into an executable for a
target. Some operating systems don’t require an explicit link step because the OS loader
dynamically links the program elements as it loads into memory. This is true of Unix-style
embedded operating systems but most embedded OSs require an explicit linking step. The
linker often relocates the program as well, meaning that the start address is specified during the
link step and assembly language jump instructions must be updated to reflect the actual starting
base address.

A loader is a tool that loads the object image output from the linking step into the memory of
the target environment. This may be done via a serial or network link or by burning the
software image into nonvolatile memory such as Flash or EPROM. As an alternative to loading
the software image on a target platform, many developers use simulators for the target that
execute on their host development systems. It is common, for example, to use Z80 or 8051
simulators running on Windows to begin to run, debug, and test your software even before
target boards are available.

So far, the tools mentioned in the tool chain have been limited to getting software onto the
system. Beyond that, we need to ensure that the software works properly. The next set of tools
are debuggers – tools that give us a great measure over the execution of the software, including
the ability to step into (execute line by line) or step over (execute in entirety) functions, set
breakpoints, and to examine and modify variables. These debuggers may work over standard
serial and network links or over JTAG3 ports.

Modern-day Integrated Development Environments (IDEs) link together most or all of the tools
in the embedded tool chain to facilitate and automate the development process. The latest
industry trend is to host the IDEs in the Eclipse platform4 because of the power of the integrated
environment and the availability of third-party and open-source plug-ins. The Jazz Foundation

2 See www.gnu.org for releases and supported targets.
3 Joint Test Architecture Group, an electronic and software standard interface used by many developers for testing
on embedded targets. See www.freelabs.com/%26whitis/electronics/jtag/ or www.embedded.com/story/OEG2002
1028S0049 for more information.

4 www.eclipse.org

What Is Embedded Programming? 5

takes the Eclipse platform further to integrate management, measurement, reporting, and other
tools to better support collaborative software development and delivery.

1.1.3 OS, RTOS, or Bareback?

An operating system (OS) provides a set of system and platform execution services for the
application developer, especially around the management and use of target system resources.
These resources include memory, concurrency units (processes, tasks, or threads), event
queues, interrupts, hardware, and application programs. Most OSs do not provide any
guarantees about timeliness, and desktop OSs may invoke unpredictable delays due to internal
processing, memory management, or garbage collection at unforeseeable times. This unpre
dictability, and the fact that most desktop OSs are huge (compared to available memory),
makes them unsuitable for real-time and embedded environments that are constrained in both
time and resources.

A real-time operating system (RTOS) is a multitasking operating system intended for real-time
and embedded applications. RTOSs are generally written to provide services with good
efficiency and performance, but usually the predictability of the performance is more important
than the maximum throughput. In addition, RTOSs are smaller and often less capable than
desktop OSs. RTOSs don’t guarantee real-time performance but they provide an application
environment so that appropriate developed applications can achieve real-time performance.

RTOSs run applications and tasks using one of three basic design schemas. Event-driven
systems handle events as they arise and schedule tasks to handle the processing. Most such
systems use task priority as a quantitative means by which to determine which task will run if
multiple tasks are ready to run. Task priorities are most often static (i.e., specified at design time
as such with rate-monotonic scheduling) but some are dynamic, varying the task priorities to
account for current operating conditions (such as earliest deadline first scheduling). The other
two approaches to task scheduling implement a “fairness doctrine” either by giving all tasks a
periodic time slice in which to run (time-base schemas, such as round robin scheduling) or by
running the task set cyclically (sequence-based schemas, such as cyclic executive scheduling).

Twenty years ago, most development houses specializing in real-time systems wrote their own
proprietary RTOSs but the RTOS market has undergone a consolidation, enabling such houses
to spend a greater percentage of their development efforts on their in-house specialties by
buying a commercial RTOS instead.

Some of the challenges of using RTOSs include the fact that while there are some big players,
such as Wind River (maker of VxWorks™) and Green Hills Software (maker of Integrity™),
there are literally hundreds of RTOSs in use today, and each has its own Application Program
Interface (API). Further, although RTOSs have a smaller footprint and timeliness impact than
their desktop brethren, that is not the same as having no impact. Many embedded systems run

6 Chapter 1

on small 8-bit processors with only a few tens of kilobytes of memory – too little for a standard
RTOS. Many RTOSs support a scalable set of services (based on the Microkernel Architecture
Pattern5) but the degree of fidelity of that scalability may not meet the needs of a tightly-
constrained application.

Some systems having too few resources to support both an RTOS and the actual application
software opt to go bareback – that is, function without a commercial or proprietary RTOS at all.
This means that the application code itself must replicate any RTOS services or functionality
needed by the application. With the drop in hardware costs, systems formerly done with tiny
8-bit processors have moved up to larger 16- and 32-bit processors. This is needed to add the
additional complexity of behavior required in modern embedded devices and is enabled by the
lower recurring costs of parts and manufacturing.

For very simple embedded systems, there may be no explicit operating system functionality at
all. The application may simply be a set of interrupt handlers that communicate via a shared
resource scheme such as queuing or shared memory. Alternatively, a simple task loop imple
mentation of a cyclic executive might suffice. Somewhat more complex systems may introduce
operating system features such as memory or task management as they need them.

From one point of view, an operating system is an integrated set of design patterns that provides
certain kinds of services and resources to applications. Chapter 3 in this book discusses patterns
for accessing hardware resources, such as timers and memory while Chapter 4 focuses on ways
of managing concurrency in your embedded system.

1.1.4 Embedded Middleware

Middleware is software that connects software components together in some way. Middleware
as a term dates back to the 1968 NATO Software Engineering Conference6. Like operating
systems, there is commercial support for middleware, but in small systems it may be developed
as a part of the application software. The most common middlewares for real-time and
embedded systems include Common Object Request Broker Architecture (CORBA) and its
many variants, and the Data Distribution Service (DDS). Both these middleware architectures
are based on standards published by the Object Management Group (OMG)7. In the case of
CORBA, there are many specialized variant standards from which to choose including Real-
Time CORBA, Embedded CORBA, and Minimum CORBA.

As you might guess, middleware is appropriate for larger-scale embedded applications – those
consisting of multiple software components or applications that may be distributed across

5	 See my book Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems (Addison-Wesley,
2002).

6	 http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
7 www.omg.org

What Is Embedded Programming? 7

multiple processors and networks. Particularly when the components are to be developed by
different organizations, the system will be extended by different organizations, or when the
system is particularly long-lived, using standard middleware provides significant benefit to the
developer

These middleware architectures, again like operating systems, are integrated collections of
design patterns, such as Proxy, Data Bus, and Broker Pattern.

1.1.5 Codevelopment with Hardware

Many embedded projects involve the development of electronic and mechanical hardware
simultaneously with the software. This introduces special challenges for the software developer
who must develop software solely on the basis of predesign specifications of how the hardware
is intended to work. All too often, those specifications are nothing more than notions of
functionality, making it impossible to create the correct software until hardware is eventually
delivered. Any slips in the hardware schedule directly induce slips in the software schedule, for
which the software developers “take the heat.”

I am reminded of working against a hardware specification for a telemetry system in the 1980s.
In this system, the hardware was supposed to pulse encode bits – eight pulses for a “0” bit and
15 pulses for a “1” bit, with a specific time period between pulses and a longer specific time
between bits. I wrote the software predicated on that specification but much to my surprise8,
when the actual hardware arrived I could only intermittently communicate with the device.
Despite intensive debugging, I couldn’t figure out where the software was failing – until I got
out the oscilloscope, that is. With the oscilloscope I could see that when the software put a “0”
bit out, the coil pulsed anywhere from six to 12 times. For a “1” bit, it pulsed anywhere from 10
to 18 times (note that the ranges for “0” and “1” bits actually overlap). The solution was to write
predictor-corrector algorithm that estimated probabilities of bit error and corrected on-the-fly
based on message CRC, the bit values, and their certainties. The software was certainly more
complex than I had expected it to be! Such is the life of the embedded programmer.

Although much of the hardware-software integration pain can be eliminated with good
specifications and early delivery of prototype hardware, much of it cannot. One of the truths of
software development is that reengineering is a necessary consequence of codevelopment.

Agile methods address this concern in a couple of different ways9. First, with agile methods,
software is constantly being developed throughout the software lifecycle. Each day, software is
being written, debugged, unit tested, and delivered. And each day, different software units are
integrated together and tested as a cohesive whole in a workflow known as continuous

8 I was naïve back then. ;-)

9 See my book Real-Time Agility (Addison-Wesley, 2009) for a thorough discussion of the topic.

8	 Chapter 1

integration. This allows software defects to be found as early as possible. This integration can
(and should) include early hardware as well.

1.1.6 Debugging and Testing

The Prussian general von Clausewitz wrote “Everything in war is very simple, but the simplest
thing is very difficult10.” He might as well have said it about software!

The simplest thing that is very difficult about software isn’t writing the software – it’s writing
the right software with the right functionality. The state of the art in developing defect-free
software is an agile practice known as test-driven development (TDD). In TDD, the unit tests
for a piece of software are written simultaneously with, or even slightly before, the software it
will verify. All too commonly, unit testing is skipped entirely or performed far too late to have
any beneficial effect on the software.

There are many different kinds of unit tests that can be applied to software in general and
embedded software in particular. These include:

•	 Functional – tests the behavior or functionality of a system or system element
•	 Quality of Service – tests the “performance” of a system or system element, often to

measure the performance of the system or element against its performance requirements
•	 Precondition tests – tests that the behavior of the system or system element is correct in the

case that the preconditional invariants are met and in the case that the preconditional
invariants are violated

•	 Range – tests values within a data range
•	 Statistical – tests values within a range by selecting them stochastically from a probability

density function (PDF)
•	 Boundary – tests values just at the edges of, just inside, and just outside a data range
•	 Coverage – tests that all execution paths are executed during a test suite
•	 Stress – tests data that exceeds the expected bandwidth of a system or system element
•	 Volume – also known as “load testing” – tests the system with large amounts of data that

meet or exceed its design load
•	 Fault Seeding – tests in which a fault is intentionally introduced to the system to ensure the

system handles it properly
•	 Regression tests – normally a subset of previously passed tests to ensure that modification

to a system did not introduce errors into previously correctly functioning systems

In a desktop system, unit testing software with test cases that explore all of these concerns is
rare (and difficult) enough. When you embedded that software on a less-accessible target

10	 von Clausewitz, C., 1976. On War. Howard, M., Paret, P. (Eds, tr.), Princeton University Press; published
originally in 1832 as Vom Kriege.

What Is Embedded Programming? 9

platform it becomes even more difficult. A number of different strategies can be employed to
execute test cases, such as

•	 “printf” testing – tests the system by writing to a file or to stdout
•	 “Test buddies” – writing test fixtures that embed the test cases in their own functionality
•	 Testing on host – performing most of the tests on the host platforms using a host native

complier and a critical subset on the target platform using a cross compiler
•	 Simulating on host – simulating the target platform on the host with cross-compiled

software and retesting a critical subset on the target with the same object code
•	 Commercial software testing tools – using software testing tools, such as TestRT™,

LDRA™, or VectorCAST™
•	 Commercial hardware-software integrated tools – this includes tools such as logic

analyzers, in-circuit emulators, JTAG-compliant testing tools, and ROM emulators

Of the various kinds of tests, performance tests are usually the most difficult to adequately
perform. This is because most of the common methods for executing test cases involve running
addition software on the same target platform, which affects the timing and performance of the
software under test. Where possible, it is clearly best to use hardware-assisted debugging with
in-circuit emulators or ROM emulators for performance testing.

1.2 OO or Structured – It’s Your Choice
Structured programming is a disciplined form of software development that emphasizes two
separate and distinct aspects.

On one hand, functions or procedures form the foundation of behavioral programming: a
procedure is a collection of primitive actions with a single entry point that performs a coherence
behavioral goal; a function is simply a procedure that returns a value. Procedures can be broken
up into call trees by one procedure invoking another, permitting algorithmic decomposition.
Procedures are usually synchronously invoked (i.e., called) but by adding additional means,
asynchronous invocations can be invoked as well.

The other side of structured programming is the notion of data structuring. All third-
generation computer languages have the notion of building complex data structures from
more primitive elements, ultimately basing them on the basic types provided by the
computer language. These may be homogeneous collections, such as arrays, or heteroge
neous ones, as with C structs.

Object-oriented programming is based on an orthogonal paradigm. Rather than have two
separate taxonomies, object-oriented programming has a single one based on the notion of a
class. A class combines together both data (stored in attributes) and procedures (known as
operations) that operate on that data, because they tend to be inherently tightly bound anyway.

10 Chapter 1

An object is an instance of a class. This makes an object equivalent to, but more powerful than,
a variable in a structured language because the object provides both the values held in its
attributes and the operations that manipulate them.

A structured language is a language that directly supports structured programming. In the
context of this book, C is clearly a structured language. C is by far the most prevalent language
for creating embedded systems and C is an inherently “structured” language. It has all the
earmarks – functions, variables, and so forth. However, an interesting question arises: can
object-oriented programming be done in a structured language, such as C? And even if it can be
done, should it be done?

I am reminded of a similar discussion back when the most common programming languages
were assembly languages. Was it possible to write structured programs in assembly code? After
all, assembly languages do not provide structured language features intrinsically. As it happens,
the answer is clearly, “Yes!” It is not only possible but profitable to write structured assembly
language programs. It requires some discipline on the part of the programmer and decisions
about the mapping of assembly language instructions to structured concepts (such as passing
parameters on the stack), but it is easy enough to do.

The same is true of object-oriented programming in structured languages such as C. In this
book, we will take a primarily object-based perspective in the programming (object-oriented
without subclassing) because I believe there are benefits to doing so. However, the creation
of object-based or object-oriented programs in C is pretty straightforward. Let’s briefly
discuss the important aspects of object-oriented programming and how to implement those
concepts in C.

1.2.1 Classes

A class is really nothing more than a C struct, but what is special about it is that it contains two
different kinds of features: data (attributes) and behavioral (operations).

The simplest way to implement classes is simply to use the file as the encapsulating
boundary; public variables and functions can be made visible in the header file, while the
implementation file holds the function bodies and private variables and functions. Multiple
files can be linked with «Usage» dependencies to support the call tree, such as in Figure 1-1.
In this case, a “class” is represented as a pair of files and its implementation uses some
features (variables or functions) of the Display class (file), in this case, the displayMsg()

function.

A somewhat more flexible approach uses structs within the files to represent the classes. The
operations of the class are defined as functions located within the same file as the struct. To
make sure that the function has access to the correct object data, we need to pass in a me pointer.

What Is Embedded Programming? 11

Figure 1.1: Classes represented as files in UML

This allows us to have multiple instances (objects) of the same class and make sure that the
member functions work on the correct copies of the data. In addition, classes are endowed with
“special” operations. A constructor creates an object of the class. An initializer (optionally)
initializes the object and its attributes. A destructor destroys the class and releases the memory
used.

Consider a simple class Sensor with data elements value, updateFrequency, and
filterFrequency and operations, getValue(), setValue(v: int), setUpdateFreq

(r:int), getUpdateFreq(), setFilterFreq(ff: int), and getFilterFreq(). The
header file would look something like Code Listing 1.

#ifndef Sensor_H

#define Sensor_H

/*## class Sensor */

typedef struct Sensor Sensor;

12 Chapter 1

struct Sensor {

int filterFrequency;

int updateFrequency;

int value;

};

int Sensor_getFilterFrequency(const Sensor* const me);

void Sensor_setFilterFrequency(Sensor* const me, int p_filterFrequency);

int Sensor_getUpdateFrequency(const Sensor* const me);

void Sensor_setUpdateFrequency(Sensor* const me, int p_updateFrequency);

int Sensor_getValue(const Sensor* const me);

Sensor * Sensor_Create(void);

void Sensor_Destroy(Sensor* const me);

Code Listing 1-1: Sensor Header File

The associated implement file is shown in Code Listing 2.

#include "Sensor.h"

void Sensor_Init(Sensor* const me) {

}

void Sensor_Cleanup(Sensor* const me) {

}

int Sensor_getFilterFrequency(const Sensor* const me) {

return me->filterFrequency;

}

void Sensor_setFilterFrequency(Sensor* const me, int p_filterFrequency) {
me->filterFrequency = p_filterFrequency;

}

int Sensor_getUpdateFrequency(const Sensor* const me) {

return me->updateFrequency;

}

void Sensor_setUpdateFrequency(Sensor* const me, int p_updateFrequency) {
me->updateFrequency = p_updateFrequency;

}

int Sensor_getValue(const Sensor* const me) {

return me->value;

}

Sensor * Sensor_Create(void) {

Sensor* me = (Sensor *) malloc(sizeof(Sensor));

What Is Embedded Programming? 13

if(me!=NULL)

{

Sensor_Init(me);

}

return me;

}

void Sensor_Destroy(Sensor* const me) {

if(me!=NULL)

{

Sensor_Cleanup(me);

}

free(me);

}

Code Listing 2: Sensor Implementation File

In this case, the file serves as the encapsulation boundary, and stylistically two files (a header .h
file and an implementation .c file) group together the elements within a single class. This
approach supports object-based programming very well, but doesn’t implement virtual func
tions in a fashion that can be easily overridden in subclasses.

An alternative approach that supports object-oriented programming is to embed function
pointers within the struct itself. This will be discussed shortly in Section 1.2.3.

1.2.2 Objects

Objects are instances of classes, in the same way that a specific variable x (of type int) is an
instance of its type (int). The same set of operators (such as arithmetic operators) apply to
all variables of that type, but the specific values of one instance differ from another instance
(say, y).

In standard C programming, complex algorithms can still be embedded in classes, but it is
common that these classes are singletons, meaning that there is exactly one instance of the
class in the application. A singleton Printer class, for example, may have variables such as
currentPrinter and operations like print(), but the application would have only a
single instance. There are still benefits to encapsulating the data used by a class with the
operations that act on that data, even if there is only one instance ever running. In other cases,
usually more data-centric (as opposed to algorithm- or service-centric) classes will have
multiple instances.

To create an instance of a class, simply create an instance of the struct. Consider one
possible main() that creates and uses two instances of the previous Sensor class, shown in
Code Listing 3:

14 Chapter 1

#include "Sensor.h"

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char* argv[]) {

Sensor * p_Sensor0, * p_Sensor1;

p_Sensor0 = Sensor_Create();

p_Sensor1 = Sensor_Create();

/* do stuff with the sensors ere */

p_Sensor0->value = 99;

p_Sensor1->value = -1;

printf("The current value from Sensor 0 is %d\n",

Sensor_getValue(p_Sensor0));

printf("The current value from Sensor 1 is %d\n",

Sensor_getValue(p_Sensor1));

/* done with sensors */

Sensor_Destroy(p_Sensor0);

Sensor_Destroy(p_Sensor1);

return 0;

}

Code Listing 3: Sensor main()

1.2.3 Polymorphism and Virtual Functions

Polymorphism is a valuable feature of object-oriented languages. It allows for the same
function name to represent one function in one context and another function in a different
context. In practice, this means that when either the static or dynamic context of an element
changes, the appropriate operation can be called.

Of course, the standard way to do this in C is to use conditional statements such as if or switch.
The problem with the standard approach is that it quickly becomes unwieldy when many
different contexts are available. Additionally, the approach requires that all possible contexts
must be known when the original function is written, or at least the function must be modified
to allow a new context. With polymorphic functions, prescience isn’t required. When the new
context is discovered, the polymorphic function may be created and added without requiring
changes to the original function.

Consider a sensor in which the actual interface may differ. The acquireValue function
in one context may require accessing a memory-mapped sensor, waiting for a while and
then reading a different address to acquire the value. A different context may use a port-
mapped sensor. We would definitely prefer that the client of the sensor doesn’t know how
the interface to the sensor works – requiring such knowledge makes the application far
more fragile and difficult to maintain. With the standard C approach, we’d write code
something like Code Listing 4 with the attributes whatKindOfInterface added to the
Sensor struct.

What Is Embedded Programming? 15

int acquireValue(Sensor *me) {
int *r, *w; /* read and write addresses */
int j;
switch(me->whatKindOfInterface) {
case MEMORYMAPPED:

w = (int*)WRITEADDR; /* address to write to sensor */
w = WRITEMASK; / sensor command to force a read */
for (j=0;j<100;j++) { /* wait loop */ };
r = (int *)READADDR; /* address of returned value */
me->value = *r;
break;

case PORTMAPPED:
me->value = inp(SENSORPORT);
/* inp() is a compiler-specific port function */
break;

}; /* end switch */
return me->value;
};

Code Listing 4: Polymorphism the hard way

1.2.4 Subclassing

Subclassing (known as generalization in the Unified Modeling Language [UML] or as
inheritance) is a way of representing classes that are a “specialized kind of” another class. The
basic rule is that the specialized class inherits the features of the more general class. That is, all
of the features of the more general class (also known as the base or parent class) are also
features of the specialized class (also known as the derived or child class), but the latter is
allowed to both specialize and extend the more general class.

One of the key advantages of subclassing is the ability to reuse design and code. If I design a
class for a specific context and want to reuse it later in a different context, I can just design and
code the specializations and extensions without touching the base class. Further, in usage, I can
write algorithms that manipulate an instance of a type, without regard to which subclass it
might be, when that is appropriate and modify the behavior to be semantically correct with
subclass when that is necessary.

By “specialize,” I mean that the specialized class can redefine operations provided by the base class.
Because a subclass is a specialized form of a base class, any operations that make sense for an
instance of the base class should also make sense with an instance of the derived class. However, it
often happens that the implementation of that operation must be slightly different. For example, if I
write the code for queuing data from a sensor, it is likely to have operations such as insert(int

value), int remove(), int getSize(), and so on. If I create a specialized kind of a queue that
can store large amounts of data out to a mass storage device such as a flash drive, those operations
still make sense but their implementation will be different. Note that specialization refers exclu
sively to changing the implementation of operations and not at all to the redefinition of data.

16 Chapter 1

Specialization can be easily done with the switch-case statement approach mentioned in the
previous section, but it is much more versatile if function pointers are used instead. Then the
designer can simply write the specialized functions and create a new constructor that points to the
new functions instead of the old. That is, subclasses can override the operations by inserting pointers
to different functions that provide specialized behaviors. The downside is that function pointers are
a bit tricky and pointers are the leading cause of programmer-induced defects in C programs.

By “extend,” I mean that the child class will have new features, such as new attributes or
operations. In the case of the data queue, this means that I can add new attributes such as the
name of the data file used to store cached data to the flash drive as well as new operations such
as flush() and load() operations for writing out the in-memory buffer to flash or reading data
from the flash drive into the in-memory buffer, respectively. The UML class diagram in
Figure 1-2 shows both the Queue and CachedQueue classes. To simplify the problem, we
assume the queue is never misused (so we don’t have to handle over and underflow conditions)
and we want to store a maximum of 100 integers in the queue11.

The CachedQueue is conceptually straightforward. If there is room in the insert buffer, then
insert the data as with the normal queue. However, if you fill up the internal buffer, then the
insert() operation will call flush() to write the insert buffer out to disk, then the internal buffer
will be reset. For removing data, it is only slightly more complicated. If the internal buffer is
empty, then remove() calls the load() function to read the oldest data off the disk.

Reading the UML Class diagram

The class diagram shown has a number of classic UML class diagram features. The boxes
represent the classes while the lines represent relations between the classes. The class box is
(optionally) divided into three segments. The upper-most segment holds the name of the class.
The middle segment lists the attributes (data members), along with their types. The bottom

most segment shows the operations within the class.

Two different relations are shown in the figure. The line with the closed arrowhead is the
generalization relation; the line points to the more base class. The other line is known as
composition. The composition is relation that implies strong ownership, and the responsibility
for creation and destruction of the instance of the class at the other end of the relation. The
open arrowhead depicts navigation (the owner has a pointer to the part in this case, but not the
other way around). The name near the arrowhead is the name of the pointer within the
CachedQueue class. The number near the arrowhead is the multiplicity – the number of
instances needed to play the role (in this case, a single instance is needed).

11	 If you’re feeling a little ambitious, feel free to elaborate the example to handle under flow and overflow as well as
use C preprocessor macros to be able to change the type and number of elements for the data being queued. Don’t
worry – I’ll wait until you’re done.

What Is Embedded Programming? 17

This book will show patterns and examples with class diagrams, even though the primary
emphasis will be code representations. Appendix A has a brief overview of UML. If you’d like
more detail, see any of a number of books on UML, such as my Real-Time UML 3rd Edition:
Advances in the UML for Real-Time Systems (Addison-Wesley, 2004).

Figure 1.2: Queue and Cached Queue

18 Chapter 1

There is certainly more than one way to implement subclassing in C. In the approach used here, to
handle specialization, we will employ the member function pointers described in the previous
section. For extension, we will simply embed the base class as a struct within the child class.

For example, let’s look at the code for the queue example of Figure 1-2. Code Listing 5 is the
header file for the Queue class, the structure of which should be pretty much as you expect.

#ifndef QUEUE_H_

#define QUEUE_H_

#define QUEUE_SIZE 10

/* class Queue */
typedef struct Queue Queue;
struct Queue {

int buffer[QUEUE_SIZE]; /* where the data things are */
int head;
int size;
int tail;
int (*isFull)(Queue* const me);
int (*isEmpty)(Queue* const me);
int (*getSize)(Queue* const me);
void (*insert)(Queue* const me, int k);
int (*remove)(Queue* const me);

};

/* Constructors and destructors:*/
void Queue_Init(Queue* const me,int (*isFullfunction)(Queue* const me),

int (*isEmptyfunction)(Queue* const me),
int (*getSizefunction)(Queue* const me),
void (*insertfunction)(Queue* const me, int k),
int (*removefunction)(Queue* const me));

void Queue_Cleanup(Queue* const me);

/* Operations */

int Queue_isFull(Queue* const me);

int Queue_isEmpty(Queue* const me);

int Queue_getSize(Queue* const me);

void Queue_insert(Queue* const me, int k);

int Queue_remove(Queue* const me);

Queue * Queue_Create(void);

void Queue_Destroy(Queue* const me);

#endif /*QUEUE_H_*/

Code Listing 5: Queue Header

Code Listing 6 shows the (simple) implementation of the Queue operations and Code Listing 7
provides a simple little test program that shows elements inserted and removed into and from
the queue.

What Is Embedded Programming? 19

#include <stdio.h>
#include <stdlib.h>
#include "queue.h"

void Queue_Init(Queue* const me,int (*isFullfunction)(Queue* const me),
int (*isEmptyfunction)(Queue* const me),
int (*getSizefunction)(Queue* const me),
void (*insertfunction)(Queue* const me, int k),
int (*removefunction)(Queue* const me)){

/* initialize attributes */

me->head = 0;

me->size = 0;

me->tail = 0;

/* initialize member function pointers */

me->isFull = isFullfunction;

me->isEmpty = isEmptyfunction;

me->getSize = getSizefunction;

me->insert = insertfunction;

me->remove = removefunction;

}

/* operation Cleanup() */

void Queue_Cleanup(Queue* const me) {

}

/* operation isFull() */
int Queue_isFull(Queue* const me){

return (me->head+1) % QUEUE_SIZE == me->tail;
}

/* operation isEmpty() */
int Queue_isEmpty(Queue* const me){

return (me->head == me->tail);
}
/* operation getSize() */
int Queue_getSize(Queue* const me) {

return me->size;
}
/* operation insert(int) */
void Queue_insert(Queue* const me, int k) {

if (!me->isFull(me)) {

me->buffer[me->head] = k;

me->head = (me->head+1) % QUEUE_SIZE;

++me->size;

}
}

/* operation remove */
int Queue_remove(Queue* const me) {

int value = -9999; /* sentinel value */
if (!me->isEmpty(me)) {

value = me->buffer[me->tail];

me->tail = (me->tail+1) % QUEUE_SIZE;

–me->size;

20 Chapter 1

}

return value;

}

Queue * Queue_Create(void) {

Queue* me = (Queue *) malloc(sizeof(Queue));

if(me!=NULL)

{
Queue_Init(me, Queue_isFull, Queue_isEmpty, Queue_getSize,
Queue_insert, Queue_remove);

}

return me;

}

void Queue_Destroy(Queue* const me) {

if(me!=NULL)

{

Queue_Cleanup(me);

}

free(me);

}

Code Listing 6: Queue Implementation

#include <stdio.h>

#include <stdlib.h>

#include "queue.h"

int main(void) {

int j,k, h, t;

/* test normal queue */

Queue * myQ;

myQ = Queue_Create();

k = 1000;

for (j=0;j<QUEUE_SIZE;j++) {
h = myQ->head;
myQ->insert(myQ,k);
printf("inserting %d at position %d, size =%d\n",k--,h, myQ->getSize(myQ));

};

printf("Inserted %d elements\n",myQ->getSize(myQ));

for (j=0;j<QUEUE_SIZE;j++) {

t = myQ->tail;

k = myQ->remove(myQ);

printf("REMOVING %d at position %d, size =%d\n",k,t, myQ->getSize(myQ);

};

printf("Last item removed = %d\n", k);

printf("Current queue size %d\n", myQ->getSize(myQ));

puts("Queue test program");

return EXIT_SUCCESS;

}

Code Listing 7: Queue Test Program

What Is Embedded Programming? 21

Now let us suppose that memory is very tight and so we need to reduce the size of the in-
memory buffer and store most elements to disk. Our CachedQueue fits the bill.

Code Listing 8 shows the header file for the class. You can see some important aspects of the
definition of the class. First, note that the base class is retained in the subclass as an attribute
named queue. This brings in the operations and attributes from the base class within the
subclass. Secondly, note that the operations defined for the base class are replicated as
member function pointers in the subclass. In that way, they can be directly invoked on the
subclass instance. Each such virtual function can then either deal entirely with the request or
deal with some aspect of it and delegate the rest to the original function defined on the Queue
class (still held within its virtual functions). Lastly, note that the aggregate outputQueue is
also an attribute of the subclass. This allows the CachedQueue to manage two in-memory
buffers. The “normal” one (represented by the base class) is where new data gets inserted. The
other one (represented by the aggregated outputQueue) is where the data comes from for a
remove.

#ifndef CACHEDQUEUE_H_

#define CACHEDQUEUE_H_

#include "queue.h"

typedef struct CachedQueue CachedQueue;
struct CachedQueue {

Queue* queue; /* base class */
/* new attributes */
char filename[80];

int numberElementsOnDisk;
/* aggregation in subclass */
Queue* outputQueue;

/* inherited virtual functions */
int (*isFull)(CachedQueue* const me);
int (*isEmpty)(CachedQueue* const me);
int (*getSize)(CachedQueue* const me);
void (*insert)(CachedQueue* const me, int k);
int (*remove)(CachedQueue* const me);
/* new virtual functions */
void (*flush)(CachedQueue* const me);
void (*load)(CachedQueue* const me);

};

/* Constructors and destructors:*/
void CachedQueue_Init(CachedQueue* const me, char* fName,

int (*isFullfunction)(CachedQueue* const me),
int (*isEmptyfunction)(CachedQueue* const me),

22 Chapter 1

int (*getSizefunction)(CachedQueue* const me),

void (*insertfunction)(CachedQueue* const me, int k),

int (*removefunction)(CachedQueue* const me),

void (*flushfunction)(CachedQueue* const me),

void (*loadfunction)(CachedQueue* const me));

void CachedQueue_Cleanup(CachedQueue* const me);

/* Operations */

int CachedQueue_isFull(CachedQueue* const me);

int CachedQueue_isEmpty(CachedQueue* const me);

int CachedQueue_getSize(CachedQueue* const me);

void CachedQueue_insert(CachedQueue* const me, int k);

int CachedQueue_remove(CachedQueue* const me);

void CachedQueue_flush(CachedQueue* const me);

void CachedQueue_load(CachedQueue* const me);

CachedQueue * CachedQueue_Create(void);

void CachedQueue_Destroy(CachedQueue* const me);

#endif /*CACHEDQUEUE_H_*/

Code Listing 8: CachedQueue header file

Code Listing 9 shows the implementation (sans file I/O, just to simplify the example a bit). You can
see how the CachedQueue_Init() function constructs the subclass instance (with a call to
Queue_Create()) and then sets up its own attributes and virtual member functions. You can also
see how the CachedQueue_getSize() function computes the number of elements held: it is the
sum of the data held in the queue, the outputQueue, and the number of elements stored on disk.
While the implementation is not quite up to shippable standards (I’d want to add error handling, for
example), it does illustrate one way to create classes and instances of those classes in the C language.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "cachedQueue.h"

void CachedQueue_Init(CachedQueue* const me, char* fName,

int (*isFullfunction)(CachedQueue* const me),

int (*isEmptyfunction)(CachedQueue* const me),

int (*getSizefunction)(CachedQueue* const me),

void (*insertfunction)(CachedQueue* const me, int k),

int (*removefunction)(CachedQueue* const me),

void (*flushfunction)(CachedQueue* const me),

void (*loadfunction)(CachedQueue* const me)) {

/* initialize base class */
me->queue = Queue_Create(); /* queue member must use its original functions */

/* initialize subclass attributes */

me->numberElementsOnDisk = 0;

strcpy(me->filename, fName);

What Is Embedded Programming? 23

/* initialize aggregates */

me->outputQueue = Queue_Create();

/* initialize subclass virtual operations ptrs */

me->isFull = isFullfunction;

me->isEmpty = isEmptyfunction;

me->getSize = getSizefunction;

me->insert = insertfunction;

me->remove = removefunction;

me->flush = flushfunction;

me->load = loadfunction;

}

/* operation Cleanup() */
void CachedQueue_Cleanup(CachedQueue* const me) {

Queue_Cleanup(me->queue);
}

/* operation isFull() */
int CachedQueue_isFull(CachedQueue* const me){

return me->queue->isFull(me->queue) &&
me->outputQueue->isFull(me->outputQueue);

}

/* operation isEmpty() */
int CachedQueue_isEmpty(CachedQueue* const me){

return me->queue->isEmpty(me->queue) &&
me->outputQueue->isEmpty(me->outputQueue) &&
(me->numberElementsOnDisk == 0);

}

/* operation getSize() */
int CachedQueue_getSize(CachedQueue* const me) {

return me->queue->getSize(me->queue) +
me->outputQueue->getSize(me->outputQueue) +
me->numberElementsOnDisk;

}

/* operation insert(int) */
// Imsert Algorithm:
// if the queue is full,
// call flush to write out the queue to disk and reset the queue
// end if
// insert the data into the queue
void CachedQueue_insert(CachedQueue* const me, int k) {

if (me->queue->isFull(me->queue)) me->flush(me);
me->queue->insert(me->queue, k);

}

/* operation remove */

// remove algorithm

// if there is data in the outputQueue,

// remove it from the outputQueue

24 Chapter 1

// else if there is data on disk
// call load to bring it into the outputQueue
// remove it from the outputQueue
// else if there is data in the queue
// remove it from there
// (if there is no data to remove then return sentinel value)
int CachedQueue_remove(CachedQueue* const me) {

if (!me->outputQueue->isEmpty(me->outputQueue))

return me->outputQueue->remove(me->outputQueue);

else if (me->numberElementsOnDisk>0) {

me->load(me);

return me->queue->remove(me->queue);

}
else

return me->queue->remove(me->queue);
}
/* operation flush */
// Precondition: this is called only when queue is full
// and filename is valid
// flush algorithm
// if file is not open, then open file
// while not queue->isEmpty()
// queue->remove()
// write data to disk
// numberElementsOnDisk++
// end while
void CachedQueue_flush(CachedQueue* const me){

// write file I/O statements here . . .

}

/* operation load */

// Precondition: this is called only when outputQueue is empty

// and filename is valid

// load algorithm

// while (!outputQueue->isFull() && (numberElementsOnDisk>0)

// read from start of file (i.e., oldest datum)

// numberElementsOnDisk– –;

// outputQueue->insert()

// end while

void CachedQueue_load(CachedQueue* const me) {

// write file I/O statements here . . .

}

CachedQueue * CachedQueue_Create(void) {
CachedQueue* me = (CachedQueue *)

malloc(sizeof(CachedQueue));
if(me!=NULL)

{
CachedQueue_Init(me, "C:\\queuebuffer.dat",

CachedQueue_isFull, CachedQueue_isEmpty,

What Is Embedded Programming? 25

CachedQueue_getSize, CachedQueue_insert, CachedQueue_remove,
CachedQueue_flush, CachedQueue_load);

}

return me;

}

void CachedQueue_Destroy(CachedQueue* const me) {

if(me!=NULL)

{

CachedQueue_Cleanup(me);

}

free(me);

}

Code Listing 9: CachedQueue Implementation

The capability to use inheritance (subclassing) will be useful in some of the design patterns I
will discuss later in this book, besides being of value all on its own.

1.2.5 Finite State Machines

A finite state machine (FSM) is a machine specified by a finite set of conditions of existence
(called “states”) and a likewise finite set of transitions among the states triggered by events.
An FSM differs from an activity diagram or flow chart in that the transitions are triggered
by events (primarily) rather than being triggered when the work done in the previous state is
complete. Statecharts are primarily used to model the behavior of reactive elements, such
as classes and use cases, that wait in a state until an event of interest occurs. At that point,
the event is processed, actions are performed, and the element transitions to a new state.

Actions, such as the execution of a primitive C language statement or the invocation of an
operation, may be specified to be executed when a state is entered or exited, or when a
transition is taken. The order of execution of actions is exit actions of the predecessor
state, followed by the transition actions, followed by the entry actions of the subsequent state.

The UML uses statecharts as their formal FSM representation, which are significantly more
expressive and scalable than “classical” Mealy-Moore FSMs. UML state machines, based on
Dr. David Harel’s statechart semantics and notation, have a number of extensions beyond
Mealy-Moore state machines, including:

• Nested states for specifying hierarchical state membership
• AND-states for specifying logical independence and concurrency
• Pseudostates for annotating commonly-needed specific dynamic semantics

Figure 1-3 shows some of the basic elements of a statechart for the SecuritySupervisor class
shown previously in Figure 1-1. It includes basic OR-states and transitions, as well as a few
less-elementary concepts, including nested states and conditional and initial pseudostates.

26 Chapter 1

Figure 1-3: Basic State Machine

Transitions are arrowed lines coming from a predecessor state and terminating on a subsequent
state. Transitions usually have the optional event signature and action list. The basic form of an
event signature is

event-name ‘(‘parameter-list‘)’ ‘[‘guard’]’ ‘/’ action-list

The event-name is simply the logical name of the event class that may be sent to an instance of
the Classifier at run-time, such as keypress in Figure 1-3. The UML defines four distinct
kinds of events that may be passed or handled:

•	 SignalEvent – an asynchronously sent event
•	 CallEvent – a synchronously sent event
•	 TimeEvent – an event due to the passage of an interval of time (most common) or arrival of

an epoch
•	 ChangeEvent – a change in a state variable or attribute of the Classifier

Asynchronous event transfer is always implemented via queuing of the event until the element is
ready to process it. That is, the sender “sends and forgets” the event and goes on about its
business, ignorant of whether or not the event has been processed. Synchronous event transfer
executes the state processing of the event in the thread of the sender, with the sender blocked from
continuing until that state processing is complete. This is commonly implemented by invoking a

What Is Embedded Programming? 27

class method called an event handler that executes the relevant part of the state machine, returning
control to the sender only when the event processing is complete. Such “triggered operations”
don’t have a standard method body; their method body is the action list on the state machine.

Events may have parameters – typed values accepted by the state machine which may then be
used in the guard and actions in the processing of the event. The statechart specifies the formal
parameter list, while the object that sends the event must provide the necessary actual
parameters to bind to the formal parameter list. We will use a slightly peculiar syntax for
passing events. We will create a struct named params that contains the named parameters for
every event that carries data. If an event e has two parameters, x and y, to use these in a guard,
for example, you would dereference the params struct to access their value. So a transition
triggered by event e with a guard that specified that x must be greater than 0 and y must be less
than or equal to 10 for the transition to be taken would look like:

e[params->x>0 && params->y<=10]

Time events are almost always relative to the entry to a state. A common way to name such an
event (and what we will use here) is “tm(interval),” where “interval” is the time interval
parameter for the timeout event12. If the timeout occurs before another specified event occurs,
then the transition triggered by the timeout event will be taken; if another event is sent to the
object prior to the triggering of the timeout, then the time is discarded; if the state is reentered,
the timeout interval is started over from the beginning.

If a transition does not provide a named event trigger, then this is activated by the “completion”
or “null” event. This event occurs either as soon as the state is entered (which includes the
execution of entry actions for the state) or when the state activities complete.

A guard is a Boolean expression contained within square brackets that follows the event trigger.
The guard should return only TRUE or FALSE and not have side effects. If a guard is specified
for a transition and the event trigger (if any) occurs, then the transition will be taken if and only
if the guard evaluates to TRUE. If the guard evaluates to FALSE, then the triggering event is
quietly discarded and no actions are executed.

The action list for the transition is executed if and only if the transition is taken; that is, the
named event is received by the object while it is in the predecessor state and the guard, if any,
evaluates to TRUE. The entire set of exit actions–transition actions–entry actions is executed in
that order and is executed using run-to-completion semantics. Figure 1-3 shows actions on a
number of different transitions as well as on entry into some of the states.

A run of the three “classes” from Figure 1-1 using test1 from the TestDriver (which sends ‘1’,
‘2’, ‘3’, ‘4’, ‘e’ (the code for the ENTER key), followed by ‘r’ (the code for the RESET key) is
shown in Figure 1-4 in a UML sequence diagram.

12 Another common way is to use the term “after(interval).”

28 Chapter 1

Figure 1-4: Running the state behavior

What Is Embedded Programming? 29

While I will later discuss design patterns for implementation of state machines, the most
common implementation is to generate simple if-then or switch-case statements. For example, a
common and easy implementation scheme is to

•	 Add a state variable (e.g., activeState)
•	 For each event to the “class,” add an event receptor function and pass in any data that it

needs as parameters
•	 Create an event dispatcher function, called by each event receptor; this processes the

incoming event

The structure of the event dispatcher can be as simple as

switch(activeState) {

/* for each state */

case state1:

/* for each event */

Switch (eventID) {

event1:

/* check each guard */

If (guard1()) {

action1();

] else if (guard2()) {

action2();

};

break;

event2:

if (guard3()) {

action3();

} else if (guard4()) {

action5();

};

break;

};

break;

case state2:

// etc

}

For example, given the SecuritySupervisor class, you might implement the state machine event
dispatcher as shown in Code Listing 10. Adding asynchronous events requires adding the
queuing of the events and their data. Note: the Null_id represents so-called “null events” –
transitions that are not triggered by explicit events, but simply “fire” when the actions in the
previous state complete.

static eventStatus dispatchEvent(short id) {

eventStatus res = eventNotConsumed;

switch (activeState) {

/* are we in the Idle state? */

30 Chapter 1

case SecuritySupervisor_Idle:
{

if(id == Null_id) /* null triggered event? */
{

if(retries>=3)
{

activeState = SecuritySupervisor_ErrorState;
displayMsg("ERROR: Max retries Exceeded");

res = eventConsumed;
}

else
{

++retries;
activeState = SecuritySupervisor_Accepting;
res = eventConsumed;

}

}
}
break;

/* are we in the Accepting State? */
case SecuritySupervisor_Accepting:
{

if(id == keypress_SecuritySupervisor_Event_id)
{

/* params struct has the data in the attribute ’key’ */
/* transition 1 */

if(isCANCEL(params->key))
{

retries = 0;
displayMsg("Cancelled");
activeState = SecuritySupervisor_Idle;
{

/* state ROOT.Idle.(Entry) */
strcpy(pin, "");

}
res = eventConsumed;

}
else

{
/* transition 3 */
if(isDigit(params->key))

{
/* transition 3 */
addKey(params->key);
activeState = SecuritySupervisor_Accepting;
res = eventConsumed;

}
else

{
/* transition 5 */

What Is Embedded Programming? 31

if(isENTER(params->key))
{

activeState =
SecuritySupervisor_CheckingLength;

res = eventConsumed;
}

}
}

}
}
break;
case SecuritySupervisor_CheckingLength:
{

if(id == Null_id)
{

/* transition 10 */

if(strlen(pin) == 4)

{
activeState = SecuritySupervisor_ValidatingPIN;
res = eventConsumed;

}

else

{

{

/* transition 9 */
displayMsg("ERROR: PIN wrong length");

}
activeState = SecuritySupervisor_Idle;
{

/* state ROOT.Idle.(Entry) */
strcpy(pin, "");

}

res = eventConsumed;

}
}

}
break;
case SecuritySupervisor_ValidatingPIN:
{

if(id == Null_id)
{

/* transition 13 */

if(isValid(pin))

{
{

/* transition 13 */
unlockDoor();
displayMsg("Door unlocked");

}

activeState = SecuritySupervisor_SecurityOpen;

res = eventConsumed;

32 Chapter 1

}
else

{
{

/* transition 12 */
displayMsg("ERROR:: Invalid PIN");

}
activeState = SecuritySupervisor_Idle;
{

/* state ROOT.Idle.(Entry) */
strcpy(pin, "");

}
res = eventConsumed;

}
}

}

break;

case SecuritySupervisor_SecurityOpen:

{

if(id == keypress_SecuritySupervisor_Event_id)
{

/* params-key has the data passed with the event */
/* transition 14 */
if(isRESET(params->key))

{
{

/* transition 14 */
lockDoor(); retries = 0;
displayMsg("Door locked.");

}
activeState = SecuritySupervisor_Idle;
{

/* state ROOT.Idle.(Entry) */
strcpy(pin, "");

}
res = eventConsumed;

}
}

}

break;

default:

break;

}

return res;

}

Code Listing 10: SecuritySupervisor Event Dispatcher

What Is Embedded Programming? 33

There is certainly more to state machines than we’ve introduced so far, but those are
discussed later in Chapter 5. For a more detailed discussion of UML state machines,
refer to Chapter 3 of Real-Time UML 3rd Edition13 and Chapters 7 and 12 in Doing
Hard Time14.

1.3 What Did We Learn?
This chapter discussed the special characteristics of embedded systems – working within
tight design constraints while meeting functional and quality-of-service constraints. To do
this, embedded developers use tools from the embedded tool chain to develop on a more
powerful host computer while targeting an often smaller and less capable target com
puting environment. Target environments run the gamut from small eight-bit processors
with a few kilobytes of memory to networked collections of 64-bit systems. At the small
scale, many systems are too tightly constrained in memory, performance, or cost to
permit the use of a commercial RTOS, while at the large scale, the systems may include
a heterogeneous set of operating systems, middleware, and databases. Often, embedded
software must be developed simultaneously with the hardware, making it difficult to test
and debug since the target environments may not exist when the software is being
developed.

By far, the most common language for developing embedded systems is C. C has the
advantages of high availability of compilers for a wide range of target processors and a well-
deserved reputation for run-time efficiency. Nevertheless, the pressures to add capabilities
while simultaneously reducing costs mean that embedded developers must be continually
looking for ways to improve their designs, and their ability to design efficiently. Structured
methods organize the software into parallel taxonomies, one for data and the other for behavior.
Object-oriented methods combine the two to improve cohesion for inherently tightly-coupled
elements and encapsulation of content when loose coupling is appropriate. While C is not an
object-oriented language, it can be (and has been) used to develop object-based and object-
oriented embedded systems.

The next chapter will discuss the role of process and developer workflows in development.
These workflows will determine when and where developers employ design and design
patterns in the course of creation of embedded software. It will go on to define what design
patterns are, how they will be discussed and organized within this book, and how they can be
applied into your designs.

13 Douglass, B.P., 2004. Real-Time UML: Advances in the UML for Real-Time Systems, third ed. Addison-Wesley.
14 Douglass, B.P., 1999. Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and

Patterns. Addison-Wesley.

34 Chapter 1

Subsequent chapters will list a variety of design patterns that can be applied to optimize your
designs. Chapter 3 provides a number of patterns that address access of hardware, such as
keyboards, timers, memory, sensors, and actuators. Chapter 4 discusses concurrency patterns
both for managing and executing concurrent threads as well as sharing resources among those
threads. The last two chapters provide a number of patterns for the implementation and use of
state machines in embedded systems: Chapter 5 provides basic state machine implementation-
focused patterns, while Chapter 6 addresses the concerns of safety and high-reliability software.

CHAPTER 2

Embedded Programming with The
HarmonyTM for Embedded RealTime

Process

Chapter Outline
2.1 Basic Elements of the Harmony Process 36

2.1.1 A Quick Overview of the Development Workflow 36

2.1.1.1 Construct the Initial Model 37

2.1.1.2 Identify Important Design Criteria 40

2.1.1.3 Rank Design Criteria 42

2.1.1.4 Select Design Patterns and Technologies 42

2.1.1.5 Apply Design Patterns and Technologies 44

2.1.1.6 Validate Design Solution 44

2.1.2 What Is a Design Pattern? 44

2.1.3 Basic Structure of Design Patterns 45

2.1.4 How to Read Design Patterns in This Book 46

2.1.5 Using Design Patterns in Development 47

2.1.5.1 Pattern Hatching – Locating the Right Patterns 47

2.1.5.2 Pattern Mining – Rolling Your Own Patterns 49

2.1.5.3 Pattern Instantiation – Applying Patterns in Your Designs 50

2.1.5.4 An Example: The Observer Pattern 51

2.1.6 Observer Pattern 66

2.2 The Approach 77

2.3 What’s Coming Up 78

What you will learn

• Agile process principles and workflows for embedded applications development

• The three levels of design

• The five key views of architecture

• Performing trade studies

• What are design patterns?

• How do I apply design patterns?

• Example design pattern instantiation

Design Patterns for Embedded Systems in C
DOI:10.1016/B978-1-85617-707-8.00002-9
Copyright © 2011 Elsevier Inc. 35

36 Chapter 2

2.1 Basic Elements of the Harmony Process
Let’s now turn our attention to the basic questions of how we, as embedded software devel
opers, perform design. While I don’t want to belabor process in this book, we perform design
activities by following (formal or informal) workflows. To understand how to do design, we
must have at least a basic agreement as to the workflow.

2.1.1 A Quick Overview of the Development Workflow

I am the author of the Harmony™ for Embedded RealTime (Harmony/ERT1) process from
IBM Rational2. This process consists of a set of best practices for the development of real-time
and embedded software, and is in use in many different embedded vertical markets, from
medical to aerospace to consumer electronics. It is an agile, model-based approach to software
development that emphasizes continual execution of software throughout its development, test-
driven development, and the use of design patterns.

The Harmony™ for Embedded RealTime process is an incremental process, similar in
some ways to Scrum3. The Harmony/ERT process focuses on three timescales, as shown in
Figure 2-1. The macrocycle focuses on the overall project timeline and major milestones.
The microcycle focuses on the production of a single validated increment (a.k.a. a build or
prototype). The nanocycle timeframe is in the range of minutes to hours and concentrates on
continual execution, debug, and unit test of the software.

The microcycle, which is iterated many times during the course of a typical project, is broken
up into several short phases, as you can see in Figure 2-2. These phases contain the workflows
relevant to the current discussion. These are briefly described in Table 2-1, where we can see a
couple of key points. First, design is something that occurs only after we have correctly
functioning software from the Object Analysis (or “Software Analysis” if you prefer) phase.
Secondly, design focuses on optimizing this correctly functioning software. This latter point is
important because that’s what design patterns – the theme of this book – do; they optimize
software. Design patterns are not about getting the software to work correctly; they are about
getting the software to work optimally.

As you can see from Table 2-1, the Harmony/ERT process uses three levels of design.
Architectural design looks at design decisions that optimize the system overall. Architectural
design is subdivided into five key views that have the greatest impact on the structure and
behavior of the software (Figure 2-3). Each of these key architectural views is described in
Table 2-2.

1 Formerly know as Harmony for Embedded SoftWare (Harmony/ESW. Don’t ask; I didn’t change the name this
time).

2 See www-01.ibm.com/software/awdtools/rmc/ for information on tools and process content.
3 See www.scrumalliance.org/.

Embedded Programming with The HarmonyTM for Embedded RealTime Process 37

Figure 2-1: Harmony/ERT timescales

Mechanistic design optimizes at the level of the collaboration, where a collaboration is a
collection of simpler elements (types, functions, variables, and classes) interacting to achieve a
single use case or system capability. Each system has usually from as few as half a dozen to as
many as several dozen such capabilities; as such, the scope of mechanistic design is an order of
magnitude smaller than architectural concerns.

Detailed design limits itself to the smallest level of concern – the insides of functions, variables,
types, and classes. This level of design is perhaps the most common level of focus by
developers but often has the least impact on overall system performance.

At any level of focus, the basic workflow for design is provided by Figure 2-4. Because
these steps will form the basis of how we use design patterns, let’s discuss each of them in
turn.

2.1.1.1 Construct the Initial Model
This step is crucial but often omitted in the developer’s haste to optimize. The step means
that before optimization is considered, a working model and code base is created. By
“working” I mean not only that it compiles and runs, but also that it is robust and
functionally correct. I also mean that it is debugged and unit-tested for functional correct
ness. It may be tested for performance to determine whether optimization is required but
that is optional at this point.

38 Chapter 2

Figure 2-2: Harmony/ERT microcycle

Table 2-1: Harmony/ERT microcycle phases.

Phase Primary Inputs Primary Outputs Description

Prototype
definition

Object analysis

Architectural
design

Mechanistic
design

Detailed design

Model/code
review

Validation

Increment
review

Continuous
integration

Prepare for
validation

Stakeholder requirements

System requirements

Functionally correct code and
models

Architecturally-optimized code and
models

Collaboration-optimized code and
models

Models and unit tested code

Optimized source code

Schedule, risk management plan,
reuse plan, hazard analysis, team

questionnaire

Models and unit-tested source code

System requirements and use case

models

System requirements use case
model

Functionally correct model
and source code

Architecturally-optimized
code and models

Collaboration-optimized
code and models

Optimized functions and

data structures

Change requests based

on

review

Validated system and change

requests

based on defects

identified

Change requests to process,
plans, or development

environment

Evolving software baseline

Test plans, test cases, test
fixtures

Transforms a subset of stakeholder

requirements

into system requirements for development

in the

current microcycle

Develops software that

 realizes

the functional

requirements; includes coding,

debugging, and unit

testing

Optimizes the

code based on explicit design

decisions meant

to optimize the system overall;

includes

coding,

debugging, and unit testing

Optimizes the code based on explicit design

decisions optimizing collaborations of elements
meant to realize a feature or use case; includes

coding, debugging, and unit testing

Optimizes the code based on the explicit design
decisions at the function, variable, and type level;

includes coding, debugging, and unit testing

Reviews the analysis, design, and code for
consistency, completeness, correctness

Tests the system against the requirements
implemented so far, including regression testing of

requirements from previous microcycles

Evaluates progress against plan and identifies
where plans must be updated; also identifies team,
environment, and development issues that need to

be improved

Executed at least daily, this activity integrates
source code from multiple developers, applies

integration tests, and updates the evolving software
baseline

Prepares for validation testing by developing plans,
test cases, and test environments

Subsystem
and

Components
View

Concurrency
and

Resource
View Harmony ESW

Safety and
Reliability

View

Architecture

Deployment Distribution

View View

40 Chapter 2

Figure 2-3: Architectural design views

Table 2-2: Key architectural views.

Key Architectural View Description

Subsystem and Specifies the set of system subsystems and components, their responsibilities,
components view connections to other subsystems, and interfaces

Concurrency and Identifies the concurrency units, how primitive elements (functions, variables,
resource view and objects) map to the concurrency units, how those concurrency units are

scheduled, and how the concurrency units synchronize and share resources

Distribution view Describes how elements are distributed across multiple address spaces and how
those elements find and collaborate with each other

Safety and reliability view Defines how faults are identified, isolated, and corrected during system
execution to maintain safety and reliability

Deployment view Characterizes how responsibilities are split across elements from different
engineering disciplines (e.g., software, electronic, mechanical, and chemical)

and the interfaces between those disciplines

2.1.1.2 Identify Important Design Criteria
This is another commonly omitted step. It is important to remember that whenever some system
aspects are optimized, it is almost always true that some other aspects are deoptimized. In order

Embedded Programming with The HarmonyTM for Embedded RealTime Process 41

Figure 2-4: Basic design workflow

to select appropriate design patterns and technologies to achieve optimization, we need to first
understand what are the important aspects to optimize, so we can trade them off appropriately.
Some common design optimization criteria are:

• Performance
• Worst case
• Average case

• Predictability
• Schedulability

42 Chapter 2

• Throughput
•	 Average
•	 Sustained
•	 Burst

• Reliability
•	 With respect to errors
•	 With respect to failures

• Safety
• Reusability
• Distributability
• Portability
• Maintainability
• Scalability
• Complexity
• Resource usage, e.g., memory
• Energy consumption
• Recurring cost, i.e., hardware
• Development effort and cost

2.1.1.3 Rank Design Criteria

The ranking of the criteria is necessary for us to make appropriate tradeoffs when we select
design patterns. Some patterns will optimize worst-case performance at the expense of using
more memory; others will optimize robustness at the expense of average case performance.
Others may optimize energy economy at the expense of responsiveness. The ranking of the
design criteria makes their relative importance explicit, so that we can reason about which
design solutions are best.

2.1.1.4 Select Design Patterns and Technologies
There is a wealth of effective design solutions and technologies available. A trade study is a
comparison of technologic solutions based on their effectiveness at achieving a balanced set of
optimization goals. Although we may choose to be less formal in our approach, the FAA
recommends a formalized decision analysis matrix4. Basically, this is a spreadsheet that
summarizes the “goodness” of a design solution based on the degree to which it matches our
weighted design criteria. For example, Table 2-3 shows the kind of analysis that we might do
formally in the spreadsheet or informally in our heads. The weight for each criteria is the
relative importance of the criteria on a scale of 0 to 10. Each alternative – a combination of
design patterns and technologies – is assigned a score (degree to which the criteria is optimized)

4	 www.faa.gov/about/office_org/headquarters_offices/ato/service_units/operations/sysengsaf/seman/SEM3.1/Sec
tion%204.6.pdf

Table 2-3: Design tradeoff spreadsheet.

Design Solution Design Criteria Total Weighted Score

Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5

Weight = 7 Weight = 5 Weight = 3 Weight = 2 Weight = 1.5

Score Score Score Score Score

Alternative
Alternative
Alternative
Alternative

1
2
3
4

7
4

10
2

3
8
2
4

6
5
4
9

9
3
8
7

4
4
8
6

106
95

120
84

44 Chapter 2

in the range 0 to 10. Each alternative is then assigned a computed total weighted score equal to
the sum of the criteria weights times their relative scores. The alternative with the largest total
weighted score provides the best balanced design solution for the set of design criteria.

2.1.1.5 Apply Design Patterns and Technologies
This step refers to the application of the selected design alternative. In design pattern terms, this
is known as pattern instantiation. As we will see, this is primarily a matter of replacing the
formal pattern parameters with the relevant elements from the working analysis model.

2.1.1.6 Validate Design Solution
The validation step ensures that the solution works and checks two different facets of the
solution. First, it ensures that the functionality of the system continues to be correct; that is,
adding in the design solution didn’t break the running model and code. Secondly, since we
selected the design patterns to optimize the system, we must ensure that we’ve achieved our
optimization goals. This means that we will rerun the previous functional and unit tests and also
add quality of service tests to measure performance, memory usage, or whatever measures are
appropriate to verify our design criteria are met.

2.1.2 What Is a Design Pattern?

A design pattern is “a generalized solution to a commonly occurring problem.” To be a pattern,
the problem must recur often enough to be usefully generalizable and the solution must be
general enough to be applied in a wide set of application domains. If it only applies to a single
application domain, then it is probably an analysis pattern5. Analysis patterns define ways for
organizing problem-specific models and code for a particular application domain.

Remember that analysis is driven by what the system must do while design is driven by how
well the system must achieve its requirements. A design pattern is a way of organizing a design
that improves the optimality of a design with respect to one or a small set of design criteria,
such as qualities of service (QoS).

A design pattern always has a focused purpose – which is to take one or a small set of these
QoS properties and optimize them at the expense of the others. Each pattern optimizes some
aspect of a system at the cost of deoptimizing some other aspects. These constitute a set of pros
and cons.

A good design is one composed of a set of design patterns applied to a piece of functional
software that achieves a balanced optimization of the design criteria and incurs an acceptable
cost in doing so. That is, a good design optimizes the important design criteria at a cost that we
are willing to pay. Note that a design always encompasses several different design patterns, so

5 A coherent set of analysis patterns is also known as a reference model.

Embedded Programming with The HarmonyTM for Embedded RealTime Process 45

each alternative in our trade study must also examine how well the patterns work together, in
addition to how each works in isolation.

As mentioned previously, patterns may be applied at the different levels of design abstraction.
Architectural patterns have systemic scope and apply mostly to only one of the five key views
of architecture. At the next level down in design abstraction, mechanistic design patterns apply
to individual collaborations, optimizing the same criteria, but in a more narrow focus. Detailed
design patterns – often referred to as design idioms – optimize the primitive elements of the
software.

2.1.3 Basic Structure of Design Patterns

According to Gamma, et. al.6, a pattern has four important aspects:

•	 Name
The name provides a “handle” or means to reference the pattern.

•	 Purpose
The purpose provides the problem context and the QoS aspects the pattern seeks to
optimize. The purpose identifies the kinds of problem contexts where the pattern might be
particularly appropriate.

•	 Solution
The solution is the pattern itself.

•	 Consequences
The consequences are the set of pros and cons of the use of the pattern.

The pattern name brings us two things. First, it allows us to reference the pattern in a clear,
unambiguous way, with the details present, but unstated. Secondly, it gives us a more abstract
vocabulary to speak about our designs. The statement “The system uses a Homogeneous
Channel redundant architecture with Cyclic Executive Concurrency distributed across a set of
processors with a Proxy Pattern” has a lot of information about the overall structure of the
system because we can discuss the architecture in terms of these patterns.

The purpose of the pattern identifies the essential problem contexts required for the pattern to
be applicable and what design criteria the pattern is attempting to optimize. This section
specifies under which situations the pattern is appropriate and under which situations it should
be avoided.

The solution, of course, specifies the structure and behavior of the pattern itself. It identifies the
elements of the pattern and their roles in the context of the pattern. This pattern solution is
integrated into your design in a process known as pattern instantiation.

6	 Gamma, E., Helm, R., Johnson, R., Vlissides, J.M., 1995. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

46 Chapter 2

The consequences are important because we always make tradeoffs when we select one pattern
over another. We must understand the pros and cons of the pattern to apply it effectively. The
pros and cons are usually couched in terms of improvement or degradation of some design
properties, as well as a possible elaboration of problem contexts in which these consequences
apply.

2.1.4 How to Read Design Patterns in This Book

All the patterns of this book are organized in the same fashion to improve the usability of the
patterns. Each pattern is provided in the following format:

•	 Abstract
The abstract gives a brief description of the pattern use or justification. This is meant as an
overview of the problem, solution, and consequences.

•	 Problem
The problem section gives a statement of the problem context and the qualities of service
addressed by the pattern.

•	 Pattern structure
This section provides a structural UML diagram of the pattern showing the important
elements of the pattern. These elements are the places into which you will substitute your
own specific application elements to instantiate the pattern. Relations among elements of
the pattern are shown as well.

•	 Consequences
The consequences section describes the tradeoffs made when the pattern is used.

•	 Implementation strategies and source code
This section discusses issues around the implementation of the pattern on different
computing platforms or in different source level languages.

•	 Example
Each pattern is shown in an example, illustrating how the pattern is applied in some
particular case. This usually involves the presentation of a UML structural diagram
showing particular application elements fulfilling the pattern collaboration roles and
relevant code snippets showing the pattern implementation.

Each pattern in this book is shown using both generic, standard UML, and C source code. The
UML graphical notation provides a higher-level overview of the pattern, but if you don’t find
this helpful, you can skip directly to the source code. If you’re interested, Appendix A gives a
UML notational summary. For a more detailed understanding of the UML itself, see Real-Time
UML 3rd Edition7.

7 Douglass, B.P., 2004. Real-Time UML: Advances in the UML for Real-Time Systems, third ed. Addison-Wesley.

Embedded Programming with The HarmonyTM for Embedded RealTime Process 47

2.1.5 Using Design Patterns in Development

By this point, you should have a reasonably good understanding of what a pattern is and
how it is organized. You should also have at least a vague grasp of the Harmony/ERT
process and our view of where design fits into the overall scheme of things. Earlier in this
chapter, you got a grounding in what we mean by the term architecture and the five views
of architecture. At this point, you are almost ready to read the patterns in this book and
apply them to your applications development. But first, let’s briefly discuss how we might
use patterns in our daily work lives.

2.1.5.1 Pattern Hatching – Locating the Right Patterns
You’re facing a design problem. How do you find the patterns that can be applied to solve your
particular design issues? We recommend a multistep approach, as shown in Figure 2-5.

1. Familiarize yourself with the patterns
First, before starting your design, familiarize yourself with the patterns literature8. There
are a number of books, papers, and websites devoted to patterns in many application
domains. Some of those patterns are given here and others are given in the references.
Once you have increased your vocabulary to include patterns likely to be relevant to your
application domain, you have more intellectual ammunition to face your design
challenges.

2. Identify design criteria
In parallel with reading about potential design alternatives, you must identify design criteria.
There are many (often conflicting) optimizations you can make to your system. This step
identifies the design optimizations that are important for this particular system in its
operational and development contexts.

3. Rank design criteria
Not all optimizations are equally important. For this reason, the design criteria must be
ranked to enable good tradeoff decisions to be made.

4. Identify potential design alternatives
This step finds patterns that optimize the design criteria of importance at a cost that seems
reasonable. While it is possible to add a single pattern at a time in this way and repeat the
workflow, it is also common to consider a set of compatible patterns together as a single
design alternative.

5. Evaluate the design alternatives
Using the trade study approach suggested earlier, this step compares the design
alternatives (consisting of one or more design patterns) against each other on the basis
of their effectiveness against the design criteria, weighted with the relative importance of
each.

8 That means read the book!

48 Chapter 2

Figure 2-5: Pattern hatching

6. Select and apply design alternative
Once a design alternative is selected, the patterns are usually added to the collaboration one
at a time, including verification of the efficacy of the solution.

Embedded Programming with The HarmonyTM for Embedded RealTime Process 49

7. Verify design functionality
The collaboration of software elements worked before applying the design patterns. This
task ensures that it still does. Because the application of design patterns usually requires
some (possibly small) amount of refactoring, some unit tests may require updates. If the
pattern application has broken the functionality, the software must be repaired so that it
passes its functional unit tests.

8. Verify design goals are met
Once the design functionality is verified, we must also ensure that the optimization goals of
the design decisions result in the right tradeoffs. If we’ve optimized the code for memory
usage, the usage should be measured as the software runs. If we’ve optimized worst-case
execution time, then that time should be measured.

2.1.5.2 Pattern Mining – Rolling Your Own Patterns

Creating your own pattern is useful, especially when you have a depth of experience to
understand the optimization issues in a particular area, and sufficient breadth to understand the
general properties of the solutions enough to abstract them into a generalized solution. We call
this pattern mining (see Figure 2-6). Pattern mining isn’t so much a matter of invention as it is

Pattern

Collaboration Collaboration

Collaboration

Figure 2-6: Pattern mining

Pattern

Pattern Pattern

Collaboration

50 Chapter 2

discovery – seeing that this solution in some context is similar to another solution in another
context and abstracting away the specifics of the solutions. Keep in mind that to be a useful
pattern, it must occur in different contexts and perform a useful optimization of one or more
design criteria.

2.1.5.3 Pattern Instantiation – Applying Patterns in Your Designs
Pattern instantiation is the opposite of pattern mining. It is applying the pattern to a particular
collaboration to gain the benefits of the pattern (see Figure 2-7). Patterns are normally applied
to a collaboration of software elements, such as classes, types, functions, and/or variables. As
mentioned previously, a collaboration is a set of software elements (at some scope these may be
small low-level functions or classes, while at others they may be large-grain assemblies such as
subsystems and components). The purpose is to organize, and possibly elaborate, this already
existing collaboration with the selected pattern.

The application or instantiation of a pattern in your design is a matter of identifying the
elements in your collaboration that fulfill the pattern parameter roles. For some of the patterns
you may create the role as a super class from which you subclass to instantiate that pattern. In
other patterns, you may simply replace the pattern element with one from your application

Figure 2-7: Pattern instantiation

Embedded Programming with The HarmonyTM for Embedded RealTime Process 51

domain, adding in the required operations and behavior. Or, you may choose to create elements
just as they exist in the pattern itself.

2.1.5.4 An Example: The Observer Pattern
Let’s consider a simple example. Figure 2-8 shows a system that contains an ECG module data
source that pipes data into a queue for consumption of a number of different clients. The data
include both a time interval marker (of type long) and the dataValue, a measurement of the
potential difference between the selected ECG lead pair. The queue is known as a “leaky
queue” in that data are never explicitly removed from the circular buffer, but are overwritten as
the buffer inserts wraparound to the start of the queue.

The source code for a simple implementation of the elements is straightforward. The ECGPkh.h
header file defines the queue size and the boolean type.

Figure 2-8: ECG monitoring system

52 Chapter 2

#ifndef ECGPkg_H

#define ECGPkg_H

#include <stdio.h>

/* forward declarations */

struct ArrythmiaDetector;

struct ECG_Module;

struct HistogramDisplay;

struct QRSDetector;

struct TMDQueue;

struct TestBuilder;

struct TimeMarkedData;

struct WaveformDisplay;

typedef unsigned char boolean;

#define QUEUE_SIZE (20000)

#endif

Code Listing 2-1: ECGPkg.h Header File

The second header file (Code Listing 2-2) is the Timed Marked Data queue (TMDQueue). It
holds the data inserted by the ECG_Module for its various data clients.

#ifndef TMDQueue_H

#define TMDQueue_H

/*## auto_generated */

#include <stdio.h>

#include "ECGPkg.h"

#include "TimeMarkedData.h"

typedef struct TMDQueue TMDQueue;

/*

This queue is meant to operate as a "leaky" queue. In this queue, data are never removed per

se, but are instead overwritten when the buffer pointer wraps around. This allows for many

clients to read the same data from the queue. */

struct TMDQueue {

int head;

int size;

struct TimeMarkedData buffer[QUEUE_SIZE];

};

/* Constructors and destructors:*/

void TMDQueue_Init(TMDQueue* const me);

void TMDQueue_Cleanup(TMDQueue* const me);

/* Operations */

int TMDQueue_getNextIndex(TMDQueue* const me, int index);

Embedded Programming with The HarmonyTM for Embedded RealTime Process 53

void TMDQueue_insert(TMDQueue* const me, const struct TimeMarkedData tmd);

boolean TMDQueue_isEmpty(TMDQueue* const me);

struct TimeMarkedData TMDQueue_remove(TMDQueue* const me, int index);

int TMDQueue_getBuffer(const TMDQueue* const me);

TMDQueue * TMDQueue_Create(void);

void TMDQueue_Destroy(TMDQueue* const me);

#endif

Code Listing 2-2: TMDQueue Header File

Code Listing 2-3 shows the header file for the ECG_Module. The code here acquires the data
across the selected lead pair and calls the TMDQueue_insert() function to store them.

#ifndef ECG_Module_H

#define ECG_Module_H

#include <stdio.h>

#include "ECGPkg.h"

struct TMDQueue;

/* class ECG_Module */

typedef struct ECG_Module ECG_Module;

struct ECG_Module {

int dataNum;

int lead1;

int lead2;

struct TMDQueue* itsTMDQueue;

};

/* Constructors and destructors:*/

void ECG_Module_Init(ECG_Module* const me);

void ECG_Module_Cleanup(ECG_Module* const me);

/* Operations */

void ECG_Module_acquireValue(ECG_Module* const me);

void ECG_Module_setLeadPair(ECG_Module* const me,

int l1, int l2);

struct TMDQueue* ECG_Module_getItsTMDQueue(const ECG_Module* const me);

void ECG_Module_setItsTMDQueue(ECG_Module* const me, struct TMDQueue* p_TMDQueue);

ECG_Module * ECG_Module_Create(void);

void ECG_Module_Destroy(ECG_Module* const me);

#endif

54 Chapter 2

Code Listing 2-3: ECG_Module Header File

The clients, for the purpose of this discussion, look pretty much the same. They all have a
get_xxx() function that pulls data out of the queue and does something interesting with them.
Each client is required to maintain its own position within the queue so that it doesn’t miss any
data. For this reason, Code Listing 2-4 shows only the header file for the HistogramDisplay
class.

#ifndef HistogramDisplay_H

#define HistogramDisplay_H

#include <stdio.h>

#include "ECGPkg.h"

struct TMDQueue;

/* class HistogramDisplay */

typedef struct HistogramDisplay HistogramDisplay;

struct HistogramDisplay {

int index;

struct TMDQueue* itsTMDQueue;

};

/* Constructors and destructors:*/

void HistogramDisplay_Init(HistogramDisplay* const me);

void HistogramDisplay_Cleanup(HistogramDisplay* const me);

/* Operations */

void HistogramDisplay_getValue(HistogramDisplay* const me);

void HistogramDisplay_updateHistogram(HistogramDisplay* const me);

struct TMDQueue* HistogramDisplay_getItsTMDQueue(const HistogramDisplay* const me);

void HistogramDisplay_setItsTMDQueue(HistogramDisplay* const me, struct TMDQueue*
p_TMDQueue);

HistogramDisplay * HistogramDisplay_Create(void);

void HistogramDisplay_Destroy(HistogramDisplay* const me);

#endif

Code Listing 2-4: HistogramDisplay Header File

The TMDQueue.c implementation file is likewise simple enough, as shown in Code
Listing 2-5.

#include "TMDQueue.h"

static void initRelations(TMDQueue* const me);

static void cleanUpRelations(TMDQueue* const me);

Embedded Programming with The HarmonyTM for Embedded RealTime Process 55

void TMDQueue_Init(TMDQueue* const me) {
me->head = 0;
me->size = 0;
initRelations(me);

}

void TMDQueue_Cleanup(TMDQueue* const me) {
cleanUpRelations(me);

}

/* operation getNextIndex(int) */
int TMDQueue_getNextIndex(TMDQueue* const me, int index) {

/* this operation computes the next index from the first using modulo arithmetic
*/
return (index+1) % QUEUE_SIZE;

}

/* operation insert(TimeMarkedData) */
void TMDQueue_insert(TMDQueue* const me, const struct TimeMarkedData tmd) {

/* note that because we never ’remove’ data from this leaky queue, size only increases to
the queue size and then stops increasing. Insertion always takes place at the head.
*/

printf("Inserting at: %d Data #: %d", me->head,

tmd.timeInterval);

me->buffer[me->head] = tmd;

me->head = TMDQueue_getNextIndex(me, me->head);

if (me->size < QUEUE_SIZE) ++me->size;

printf(" Storing data value: %d\n", tmd.dataValue);

}

/* operation isEmpty() */
boolean TMDQueue_isEmpty(TMDQueue* const me) {

return (boolean)(me->size == 0);
}

/* operation remove(int) */
struct TimeMarkedData TMDQueue_remove(TMDQueue* const me, int index) {

TimeMarkedData tmd;
tmd.timeInterval=-1; /* sentinel values */
tmd.dataValue=-9999;

if (!TMDQueue_isEmpty(me) &&

(index>=0) && (index < QUEUE_SIZE)

&& (index < me->size)) {

tmd = me->buffer[index];

}
return tmd;

}

56 Chapter 2

int TMDQueue_getBuffer(const TMDQueue* const me) {

int iter = 0;

return iter;

}

TMDQueue * TMDQueue_Create(void) {

TMDQueue* me = (TMDQueue *) malloc(sizeof(TMDQueue));

if(me!=NULL)

{

TMDQueue_Init(me);

}

return me;

}

void TMDQueue_Destroy(TMDQueue* const me) {

if(me!=NULL)

{

TMDQueue_Cleanup(me);

}

free(me);

}

static void initRelations(TMDQueue* const me) {
{

int iter = 0;

while (iter < QUEUE_SIZE){

TimeMarkedData_Init(&((me->buffer)[iter]));

TimeMarkedData__setItsTMDQueue(&((me->buffer)[iter]), me);

iter++;

}

}

}

static void cleanUpRelations(TMDQueue* const me) {
{

int iter = 0;

while (iter < QUEUE_SIZE){

TimeMarkedData_Cleanup(&((me->buffer)[iter]));

iter++;

}

}

}

Code Listing 2-5: TMDQueue.c Implementation File

The ECG_Module.c implementation file shows how data are inserted into the queue
(Code Listing 2-6).

#include "ECG_Module.h"

#include "TMDQueue.h"

Embedded Programming with The HarmonyTM for Embedded RealTime Process 57

#include <stdlib.h>

static void cleanUpRelations(ECG_Module* const me);

void ECG_Module_Init(ECG_Module* const me) {
me->dataNum = 0;
me->itsTMDQueue = NULL;

}

void ECG_Module_Cleanup(ECG_Module* const me) {
cleanUpRelations(me);

}

/* operation acquireValue() */
void ECG_Module_acquireValue(ECG_Module* const me) {

// in actual implementation, this would return the
// measured voltage across the lead pair
TimeMarkedData tmd;
tmd.dataValue = rand();
tmd.timeInterval = ++me->dataNum;
TMDQueue_insert(me->itsTMDQueue, tmd);

}

/* operation setLeadPair(int,int) */
void ECG_Module_setLeadPair(ECG_Module* const me, int l1, int l2)
{

me->lead1 = l1;
me->lead2 = l2;

}

struct TMDQueue* ECG_Module_getItsTMDQueue(const ECG_Module* const me) {
return (struct TMDQueue*)me->itsTMDQueue;

}

void ECG_Module_setItsTMDQueue(ECG_Module* const me, struct TMDQueue* p_TMDQueue) {
me->itsTMDQueue = p_TMDQueue;

}

ECG_Module * ECG_Module_Create(void) {
ECG_Module* me = (ECG_Module *) malloc(sizeof(ECG_Module));
if(me!=NULL)

{
ECG_Module_Init(me);

}
return me;

}

void ECG_Module_Destroy(ECG_Module* const me) {
if(me!=NULL)

{
ECG_Module_Cleanup(me);

}
free(me);

}

58 Chapter 2

static void cleanUpRelations(ECG_Module* const me) {

if(me->itsTMDQueue != NULL)

{

me->itsTMDQueue = NULL;

}

}

Code Listing 2-6: ECG_Module.c

The HistogramDisplay.c implementation file in Code Listing 2-7 shows the use of the
TMDQueue_remove() function.

#include "HistogramDisplay.h"

#include "TMDQueue.h"

static void cleanUpRelations(HistogramDisplay* const me);

void HistogramDisplay_Init(HistogramDisplay* const me) {

me->index = 0;

me->itsTMDQueue = NULL;

}

void HistogramDisplay_Cleanup(HistogramDisplay* const me) {

cleanUpRelations(me);

}

/* operation getValue() */
void HistogramDisplay_getValue(HistogramDisplay* const me) {

TimeMarkedData tmd;

tmd = TMDQueue_remove(me->itsTMDQueue, me->index);

printf(" Histogram index: %d TimeInterval: %d DataValue:

%d\n", me->index, tmd.timeInterval, tmd.dataValue);

me->index = TMDQueue_getNextIndex(me->itsTMDQueue,

me->index);

}

/* operation updateHistogram() */

void HistogramDisplay_updateHistogram(HistogramDisplay* const me)

{

/* put some histogram stuff here… */

}

struct TMDQueue* HistogramDisplay_getItsTMDQueue(const HistogramDisplay* const me) {
return (struct TMDQueue*)me->itsTMDQueue;

}

void HistogramDisplay_setItsTMDQueue(HistogramDisplay* const me, struct TMDQueue*
p_TMDQueue) {

me->itsTMDQueue = p_TMDQueue;
}

Embedded Programming with The HarmonyTM for Embedded RealTime Process 59

HistogramDisplay * HistogramDisplay_Create(void) {

HistogramDisplay* me = (HistogramDisplay *)

malloc(sizeof(HistogramDisplay));

if(me!=NULL)

{

HistogramDisplay_Init(me);

}

return me;

}

void HistogramDisplay_Destroy(HistogramDisplay* const me) {

if(me!=NULL)

{

HistogramDisplay_Cleanup(me);

}

free(me);

}

static void cleanUpRelations(HistogramDisplay* const me) {

if(me->itsTMDQueue != NULL)

{

me->itsTMDQueue = NULL;

}

}

Code Listing 2-7: HistogramDisplay.c Implementation File

For testing, we can put instances of the classes into a TestBuilder class as shown in Figure 2-9.

#ifndef TestBuilder_H

#define TestBuilder_H

#include <stdio.h>

#include "ECGPkg.h"

#include "ArrythmiaDetector.h"

#include "ECG_Module.h"

#include "HistogramDisplay.h"

#include "QRSDetector.h"

#include "TMDQueue.h"

#include "WaveformDisplay.h"

/* class TestBuilder */

typedef struct TestBuilder TestBuilder;

struct TestBuilder {

struct ArrythmiaDetector itsArrythmiaDetector;

struct ECG_Module itsECG_Module;

struct HistogramDisplay itsHistogramDisplay;

struct QRSDetector itsQRSDetector;

struct TMDQueue itsTMDQueue;

struct WaveformDisplay itsWaveformDisplay;

};

60 Chapter 2

Figure 2-9: ECG system test environment builder class

/* Constructors and destructors:*/
void TestBuilder_Init(TestBuilder* const me);
void TestBuilder_Cleanup(TestBuilder* const me);

struct ArrythmiaDetector* TestBuilder_getItsArrythmiaDetector(const TestBuilder*
const me);

struct ECG_Module* TestBuilder_getItsECG_Module(const TestBuilder* const me);

struct HistogramDisplay* TestBuilder_getItsHistogramDisplay(const TestBuilder* const
me);

struct QRSDetector* TestBuilder_getItsQRSDetector(const TestBuilder* const me);

struct TMDQueue* TestBuilder_getItsTMDQueue(const TestBuilder* const me);

struct WaveformDisplay* TestBuilder_getItsWaveformDisplay(const TestBuilder* const
me);

Embedded Programming with The HarmonyTM for Embedded RealTime Process 61

TestBuilder * TestBuilder_Create(void);

void TestBuilder_Destroy(TestBuilder* const me);

#endif

Code Listing 2-8: TestBuilder.h Header File

#include "TestBuilder.h"

static void initRelations(TestBuilder* const me);

static void cleanUpRelations(TestBuilder* const me);

void TestBuilder_Init(TestBuilder* const me) {

initRelations(me);

}

void TestBuilder_Cleanup(TestBuilder* const me) {

cleanUpRelations(me);

}

struct ArrythmiaDetector* TestBuilder_getItsArrythmiaDetector(const TestBuilder*

const me)

{

return (struct ArrythmiaDetector*)&(me->itsArrythmiaDetector);

}

struct ECG_Module* TestBuilder_getItsECG_Module(const TestBuilder* const me) {

return (struct ECG_Module*)&(me->itsECG_Module);

}

struct HistogramDisplay* TestBuilder_getItsHistogramDisplay(const TestBuilder* const
me) {

return (struct HistogramDisplay*)&(me->itsHistogramDisplay);

}

struct QRSDetector* TestBuilder_getItsQRSDetector(const TestBuilder* const me) {

return (struct QRSDetector*)&(me->itsQRSDetector);

}

struct TMDQueue* TestBuilder_getItsTMDQueue(const TestBuilder* const me) {

return (struct TMDQueue*)&(me->itsTMDQueue);

}

struct WaveformDisplay* TestBuilder_getItsWaveformDisplay(const TestBuilder* const me)
{

return (struct WaveformDisplay*)&(me->itsWaveformDisplay);

}

TestBuilder * TestBuilder_Create(void) {

TestBuilder* me = (TestBuilder *)

malloc(sizeof(TestBuilder));

if(me!=NULL)

62 Chapter 2

{

TestBuilder_Init(me);

}

return me;

}

void TestBuilder_Destroy(TestBuilder* const me) {

if(me!=NULL)

{

TestBuilder_Cleanup(me);

}

free(me);

}

static void initRelations(TestBuilder* const me) {

ArrythmiaDetector_Init(&(me->itsArrythmiaDetector));

ECG_Module_Init(&(me->itsECG_Module));

HistogramDisplay_Init(&(me->itsHistogramDisplay));

QRSDetector_Init(&(me->itsQRSDetector));

TMDQueue_Init(&(me->itsTMDQueue));

WaveformDisplay_Init(&(me->itsWaveformDisplay));

ECG_Module_setItsTMDQueue(&(me->itsECG_Module),

&(me->itsTMDQueue));

HistogramDisplay_setItsTMDQueue(&(me->itsHistogramDisplay),

&(me->itsTMDQueue));

QRSDetector_setItsTMDQueue(&(me->itsQRSDetector),

&(me->itsTMDQueue));

WaveformDisplay_setItsTMDQueue(&(me->itsWaveformDisplay),

&(me->itsTMDQueue));

ArrythmiaDetector_setItsTMDQueue(&(me->itsArrythmiaDetector),

&(me->itsTMDQueue));

}

static void cleanUpRelations(TestBuilder* const me) {

WaveformDisplay_Cleanup(&(me->itsWaveformDisplay));

TMDQueue_Cleanup(&(me->itsTMDQueue));

QRSDetector_Cleanup(&(me->itsQRSDetector));

HistogramDisplay_Cleanup(&(me->itsHistogramDisplay));

ECG_Module_Cleanup(&(me->itsECG_Module));

ArrythmiaDetector_Cleanup(&(me->itsArrythmiaDetector));

}

Code Listing 2-9: TestBuilder.c Implementation File

Lastly, Code Listing 2-10 shows a simple use of the various classes to insert some data into the
queue and have the clients pull them out for their use.

int main(int argc, char* argv[]) {

int status = 0;

TestBuilder * p_TestBuilder;

Embedded Programming with The HarmonyTM for Embedded RealTime Process 63

p_TestBuilder = TestBuilder_Create();

ECG_Module_acquireValue(&(p_TestBuilder->itsECG_Module));

ECG_Module_acquireValue(&(p_TestBuilder->itsECG_Module));

ECG_Module_acquireValue(&(p_TestBuilder->itsECG_Module));

ECG_Module_acquireValue(&(p_TestBuilder->itsECG_Module));

ECG_Module_acquireValue(&(p_TestBuilder->itsECG_Module));

HistogramDisplay_getValue(&(p_TestBuilder

->itsHistogramDisplay));

HistogramDisplay_getValue(&(p_TestBuilder

->itsHistogramDisplay));

HistogramDisplay_getValue(&(p_TestBuilder

->itsHistogramDisplay));

HistogramDisplay_getValue(&(p_TestBuilder

->itsHistogramDisplay));

HistogramDisplay_getValue(&(p_TestBuilder

->itsHistogramDisplay));

QRSDetector_getDataSample(&(p_TestBuilder->itsQRSDetector));

QRSDetector_getDataSample(&(p_TestBuilder->itsQRSDetector));

QRSDetector_getDataSample(&(p_TestBuilder->itsQRSDetector));

WaveformDisplay_getScalarValue(&(p_TestBuilder

->itsWaveformDisplay));

WaveformDisplay_getScalarValue(&(p_TestBuilder

->itsWaveformDisplay));

WaveformDisplay_getScalarValue(&(p_TestBuilder

->itsWaveformDisplay));

WaveformDisplay_getScalarValue(&(p_TestBuilder

->itsWaveformDisplay));

WaveformDisplay_getScalarValue(&(p_TestBuilder

->itsWaveformDisplay));

ArrythmiaDetector_getDataSample(&(p_TestBuilder

->itsArrythmiaDetector));

ArrythmiaDetector_getDataSample(&(p_TestBuilder

->itsArrythmiaDetector));

ArrythmiaDetector_getDataSample(&(p_TestBuilder

->itsArrythmiaDetector));

ArrythmiaDetector_getDataSample(&(p_TestBuilder

->itsArrythmiaDetector));

ArrythmiaDetector_getDataSample(&(p_TestBuilder

->itsArrythmiaDetector));

printf("Done\n");

TestBuilder_Destroy(p_TestBuilder);

return 0;

}

Code Listing 2-10: Sample main.c

The code presented above works in a classic client-server approach. The ECG_Monitor puts
data into the queue when it thinks it should and the various clients all individually decide when

64 Chapter 2

it is time to pull the data from the queue and do their work. In this case, the TMDQueue is the
server of the data for the clients, and the WaveformDisplay, HistogramDisplay,
QRSDetector, and ArrythmiaDetector are the clients.

We have a functioning model (with functioning code) for the system. Let’s now think about
how we’d like to optimize the system. In this case, we’d like to optimize execution time
because we’d like to free up processor cycles for other work. In addition, we’d like to
optimize maintainability of the system, limiting the number of places we’d like to make
changes to the system when it needs to be updated. We’d also like to be able to dynamically
(at run-time) vary the number of clients without wasting extra memory by allocating a
potentially large array of pointers (1 per client) that might never be used. So our design
criteria (with scaled criticality weights) are: 1) execution efficiency (weight = 7), 2) main
tainability (weight = 5), 3) flexibility to add new clients easily at run-time (weight = 4), and 4)
memory efficiency at the larger scale (weight = 7). Let’s consider three alternative strategies
(design patterns).

First, we have the current client-server approach:

1. Execution efficiency
This solution is not particularly optimal because the clients need to check frequently if there
are new data, even if there are not. On a scale of 0 to 10, let’s call that a 3. This is the primary
weakness of the approach.

2. Maintainability
In a classic client-server architecture, the clients know about the servers (so they can invoke
the services) but the servers don’t know about the clients. That limitation on knowledge
makes the system more maintainable because knowledge is encapsulated in one place. It
earns a score of 7 here.

3. Run-time flexibility
In this context flexibility primarily translates to the ability to create new clients and easily
link them into the server. Since we can adapt it to handle those concerns, it earns an 8 on this
criterion.

4. Memory usage
In this criterion, each client must maintain its position in the list, which requires additional
memory in each client. Therefore, the classic client-server approach only rates a 5 on this
criterion.

The second alternative approach is to create a “push” implementation in which the responsi
bility for notifying the clients is given to the TMDQueue. To implement this, the direction of
the associations in Figure 2-8 must be reversed, and the TMDQueue must explicitly know
about all of its clients to notify them when data become available. The client list would
probably be maintained as a list of pointers to clients.

Embedded Programming with The HarmonyTM for Embedded RealTime Process 65

1. Execution efficiency
This approach is efficient in the sense that the clients are notified when data are available
and don’t need to poll to find discover new data. Let’s give this approach an 8 here.

2. Maintainability
The push approach breaks the classic client-server architecture (the servers know about the
clients), so it only rates a 4 on this criterion. It will be harder to maintain if we add more
clients.

3. Run-time flexibility
The push approach has reasonably good run-time flexibility because it means that the server
must be modified to accept new clients. It rates a 7 here.

4. Memory usage
The approach uses memory only when a client is added, so it gets a 9 on this criterion.

The last alternative is the observer pattern9. The observer pattern is shown in Figure 2-10.

Before we use the pattern, let’s look at its description and properties. Note that in the
description that follows, the classic observer pattern has been modified slightly to fit into the
example problem easier.

Figure 2-10: Observer pattern structure

9	 See, for example, Douglass, B.P., 2002. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems. Addison-Wesley; or Gamma, E., Helm, R., Johnson, R.,Vlissides, J.M., 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley.

66 Chapter 2

2.1.6 Observer Pattern

•	 Abstract
The observer pattern addresses the concern of dynamically adding and removing clients of
data or services, as well as optimizing the processing associated with updating those clients
in a timely way.

•	 Problem
This pattern maintains the class client-server architecture in which the clients know about a
server that has either data or services of interest, but that knowledge is one way. In spite of
this, the responsibility for updating the clients in an efficient and timely way is given to the
server. In addition, because the server maintains a list of interested clients, it notifies all
clients when it is appropriate to do so, such as periodically or when the data changes.
Clients can be dynamically added to or removed from the server as the system runs, while
not requiring the server to have any knowledge of the clients (other than the location of an
operation of the correct signature).

•	 Pattern structure
This pattern defines the following roles:
•	 Abstract Observer

This element has a one-way association (link) to the Abstract Subject so that it can
request to be added to the list of interested clients (a process known as subscribing) or
removed from the list (known as unsubscribing). It provides an operation with a specific
signature to be invoked by the subject when appropriate.

•	 Abstract Subject
This element will serve as the base class for the server in the client-server architecture; it
has information or services needed by the Abstract Observer. It provides operations to
add or remove clients (subscribe and unsubscribe, respectively) and can notify all
currently subscribed clients when appropriate. Most common strategies for notification
are either periodically or when the data change. This element creates a new notification
handle for each subscribed client, forming a list of notification handles. While this list
can be managed in any number of ways, in this case it will be handled as a linked list.
Notification of the clients is simply a matter of “walking the list” and invoking the
update operation for each Abstract Observer currently subscribed.

•	 Notification handle
This element provides a dynamic callback link for the Abstract Subject to the Abstract
Observer; specifically, it has, as a data element, a pointer to the update operation of the
server. It also has a link to the next element in the list which is NULL at the end of the list.

•	 Concrete Observer (formal parameter)
This element is the subclass of the Abstract Observer; it inherits the link to the Abstract
Subject and provides a (nonimplemented) update operation that will be invoked by the
Concrete Subject.

Embedded Programming with The HarmonyTM for Embedded RealTime Process 67

•	 Concrete Subject (formal parameter)
This element is the subclass of the Abstract Subject; it inherits the ability to add and
remove clients and notify the clients when appropriate. It also provides the application-
specific data or services of interest to the Concrete Observer.

•	 Consequences
This pattern simplifies the process for dynamically adding and removing clients,
especially ones that may not have even been defined when the server was created. In
addition, because the server can decide when it is appropriate to update the clients, it
results in timely delivery of information and services. This delivery is also efficient
because the clients need not poll the server for updated data only to find the data are
the same.

Now, let’s look at how this solution stacks up.

1. Execution efficiency
This approach is efficient in the sense that the client gets data functionality only when there
is a need similar to the push approach. It rates an 8 here.

2. Maintainability
This solution maintains the classic client-server architecture data encapsulation, improving
its maintainability. The solution earns a score of 7 here.

3. Run-time flexibility
The observer pattern has good run-time flexibility; the only requirement on the client is that
it provides an update method with the appropriate signature. It rates a 9 here.

4. Memory usage
Similar to the push approach, this pattern uses less memory because the clients need not
track their position within the data buffer, so it gets a 9 on this criterion.

The results of the analysis are shown in Table 2-4. Based on the weighted criteria, the observer
pattern looks to be the best of the design alternatives examined.

Table 2-4: Design tradeoffs for ECG monitor system.

Design Solution Design Criteria Total Weighted Score

Efficiency Maintainability Flexibility Memory Usage

Weight = 7 Weight = 5 Weight = 4 Weight = 7

Score Score Score Score

Client Server 3 7 8 5 123
Push 8 4 7 9 167

Observer 8 7 9 9 190

68 Chapter 2

Once selected, the next step is to instantiate the pattern and, as a part of that, to make decisions
about how to best implement the pattern. Instantiation is a matter of replacing the formal
parameters of the pattern with elements from your original model. In this case, formal para
meter Concrete Subject will be replaced by the TMDQueue and the formal parameter Concrete
Observer will be replaced by the clients WaveformDisplay, HistogramDisplay,
QRSDetector, and ArrythmiaDetector. The resulting design model is shown in
Figure 2-11. In this diagram you can see the original environmental control elements, the
pattern elements, and their relations.

The relations, attributes, and operations of the Abstract Subject are inherited by the TMDQueue

class while the features of the Abstract Observer are inherited by the various clients of the
TMDQueue. Inheritance can be implemented in C in a number of ways, such as:

•	 Copying from the super class implementation into the subclass implementation
•	 Using a “mix-in”; that is, delegate service requests from an instance of the subclass to an

instance of the super class
•	 Implementing a virtual function table, as discussed in Chapter 1

Figure 2-11: ECG design model

Embedded Programming with The HarmonyTM for Embedded RealTime Process 69

In our code implementation, we will take the simplest possible solution just to illustrate the
pattern; we will copy and implement code from the Abstract Subject into the TMDQueue and do
the same for code from the Abstract Observer into the clients. Other implementation strategies
can be used, if desired.

The net result can be seen in Figure 2-11. Note that the clients have lost their index attribute and
gained an update() member function, as well as an Init() function (that calls subscribe()

on the TMDQueue) and a Cleanup() function that calls unsubscribe(). The TMDQueue has
added subscribe(), unsubscribe(), and notify() operations and an association to the
list of NotificationHandle classes. The notification handle holds the address for the relevant
class’s update() function. Calling notify() walks the linear linked list of notification handles.

Code Listing 2-11 and Code Listing 2-12 show the header and implementation of the TMDQueue

class updated to include the server side of the observer pattern. You can see the addition of the
link for the NotificationHandle list to manage the subscriptions of interested observers.

#ifndef TMDQueue_H

#define TMDQueue_H

/*## auto_generated */

#include <stdio.h>

#include "ECGPkg.h"

#include "TimeMarkedData.h"

struct NotificationHandle;

typedef struct TMDQueue TMDQueue;
/*
This queue is meant to operate as a "leaky" queue. In this queue,
data are never removed per se, but are instead overwritten when the
buffer pointer wraps around. This allows for many clients to read
the same data from the queue. */
struct TMDQueue {

int head;
int nSubscribers;
int size;
struct TimeMarkedData buffer[QUEUE_SIZE];
struct NotificationHandle* itsNotificationHandle;

};

/* Constructors and destructors:*/

void TMDQueue_Init(TMDQueue* const me);

void TMDQueue_Cleanup(TMDQueue* const me);

/* Operations */

int TMDQueue_getNextIndex(TMDQueue* const me, int index);

void TMDQueue_insert(TMDQueue* const me, const struct TimeMarkedData tmd);

70 Chapter 2

boolean TMDQueue_isEmpty(TMDQueue* const me);

void TMDQueue_notify(TMDQueue* const me, const struct TimeMarkedData tmd);

struct TimeMarkedData TMDQueue_remove(TMDQueue* const me, int index);

/* The NotificationHandle is managed as a linked list, with insertions coming at the end. */

void TMDQueue_subscribe(TMDQueue* const me, const UpdateFuncPtr updateFuncAddr);

int TMDQueue_unsubscribe(TMDQueue* const me, const UpdateFuncPtr updateFuncAddr);

int TMDQueue_getBuffer(const TMDQueue* const me);

struct NotificationHandle*

TMDQueue_getItsNotificationHandle(const TMDQueue* const me);

void TMDQueue_setItsNotificationHandle(TMDQueue* const me, struct NotificationHandle*

p_NotificationHandle);

TMDQueue * TMDQueue_Create(void);

void TMDQueue_Destroy(TMDQueue* const me);

#endif

Code Listing 2-11: TMDQueue Header File with Observer Pattern

#include "TMDQueue.h"

#include "NotificationHandle.h"

static void initRelations(TMDQueue* const me);

static void cleanUpRelations(TMDQueue* const me);

void TMDQueue_Init(TMDQueue* const me) {

me->head = 0;

me->nSubscribers = 0;

me->size = 0;

me->itsNotificationHandle = NULL;

initRelations(me);

}

void TMDQueue_Cleanup(TMDQueue* const me) {

cleanUpRelations(me);

}

int TMDQueue_getNextIndex(TMDQueue* const me, int index) {

/* this operation computes the next index from the

first using modulo arithmetic

*/

return (index+1) % QUEUE_SIZE;

}

void TMDQueue_insert(TMDQueue* const me, const struct TimeMarkedData tmd) {

/* note that because we never ‘remove’ data from this

leaky queue, size only increases to the queue size and

then stops increasing. Insertion always takes place at the head.

*/

Embedded Programming with The HarmonyTM for Embedded RealTime Process 71

printf("Indenting at: %d Data #: %d", me->head, tmd.timeInterval);

me->buffer[me->head] = tmd;

me->head = TMDQueue_getNextIndex(me, me->head);

if (me->size < QUEUE_SIZE) ++me->size;

printf(" Storing data value: %d\n", tmd.dataValue);

TMDQueue_notify(me, tmd);

}

boolean TMDQueue_isEmpty(TMDQueue* const me) {
return (boolean)(me->size == 0);

}

void TMDQueue_notify(TMDQueue* const me, const struct TimeMarkedData tmd) {
NotificationHandle *pNH;
pNH= me->itsNotificationHandle;
while (pNH) {

printf("----->> calling updateAddr on pNH %d\n",pNH);

pNH->updateAddr(NULL, tmd);

pNH = pNH->itsNotificationHandle;

};

}

struct TimeMarkedData TMDQueue_remove(TMDQueue* const me, int index) {
TimeMarkedData tmd;
tmd.timeInterval=-1; /* sentinel values */
tmd.dataValue=-9999;

if (!TMDQueue_isEmpty(me) && (index>=0) && (index < QUEUE_SIZE)

&& (index < me->size)) {

tmd = me->buffer[index];

}
return tmd;

}

void TMDQueue_subscribe(TMDQueue* const me, const UpdateFuncPtr updateFuncAddr) {
struct NotificationHandle *pNH;
pNH = me->itsNotificationHandle;

if (!pNH) { /* empty list? */

/* create a new Notification Handle, initialize it, and point to it */

printf("-----> Added to a new list\n");

me->itsNotificationHandle = NotificationHandle_Create();

printf("-----> Called NH_Create()\n");

pNH = me->itsNotificationHandle;

}

else {

/* search list to find end */

printf("-----> Adding to an existing list\n");

while (pNH->itsNotificationHandle != NULL) {

printf("Getting ready to augment ptr %d to %d\n", pNH, pNH->itsNotificationHandle);
pNH = pNH->itsNotificationHandle; /* get next element in list */
printf("-----> augmenting ptr\n");

72 Chapter 2

};
printf("-----> calling NH_Create\n");

pNH->itsNotificationHandle = NotificationHandle_Create();
pNH = pNH->itsNotificationHandle; /* pt to the new instance */
printf("-----> called NH_Create()\n");

}; /* end if */

/* pNH now points to an constructed Notification Handle */

pNH->updateAddr = updateFuncAddr; /* set callback address */

++me->nSubscribers;

printf("-----> wrote updateAddr \n");

if (pNH->itsNotificationHandle)

printf("xxxxxxx> next Ptr not null!\n\n");
else

printf("-----> next ptr null\n\n");
}

int TMDQueue_unsubscribe(TMDQueue* const me, const UpdateFuncPtr updateFuncAddr) {
struct NotificationHandle *pNH, *pBack;
pNH = pBack = me->itsNotificationHandle;

if (pNH == NULL) { /* empty list? */

return 0; /* can’t delete it from an empty list */

}

else { /* is it the first one? */
if (pNH->updateAddr == updateFuncAddr) {

me->itsNotificationHandle = pNH->itsNotificationHandle;

free(pNH);

printf(">>>>>> Removing the first element\n");

--me->nSubscribers;

return 1;

}

else { /* search list to find element */

printf(">>>>>> Searching. . ..\n");

while (pNH != NULL) {

if (pNH->updateAddr != updateFuncAddr) {
pBack->itsNotificationHandle = pNH->itsNotificationHandle;
free(pNH);
printf(">>>>>> Removing subscriber in list\n");
--me->nSubscribers;
return 1;
}; /* end if found */

pBack = pNH; /* points to the list element before pNH */
pNH = pNH->itsNotificationHandle; /* get next element in list */
}; /* end while */

}; /* end else */

printf(">>>>>> Didn’t remove any subscribers\n");

return 0;

}; /* non-empty list */

}

Embedded Programming with The HarmonyTM for Embedded RealTime Process 73

int TMDQueue_getBuffer(const TMDQueue* const me) {
int iter = 0;
return iter;

}

struct NotificationHandle*
TMDQueue_getItsNotificationHandle(const TMDQueue* const me) {

return (struct NotificationHandle*)me->itsNotificationHandle;
}
void TMDQueue_setItsNotificationHandle(TMDQueue* const me, struct NotificationHandle*
p_NotificationHandle) {

me->itsNotificationHandle = p_NotificationHandle;
}

TMDQueue * TMDQueue_Create(void) {
TMDQueue* me = (TMDQueue *) malloc(sizeof(TMDQueue));
if(me!=NULL)

{
TMDQueue_Init(me);

}
return me;

}

void TMDQueue_Destroy(TMDQueue* const me) {
if(me!=NULL)

{
TMDQueue_Cleanup(me);

}
free(me);

}

static void initRelations(TMDQueue* const me) {
{

int iter = 0;

while (iter < QUEUE_SIZE){

TimeMarkedData_Init(&((me->buffer)[iter]));
TimeMarkedData__setItsTMDQueue(&((me->buffer)[iter]), me);
iter++;

}
}

}

static void cleanUpRelations(TMDQueue* const me) {
{

int iter = 0;

while (iter < QUEUE_SIZE){

TimeMarkedData_Cleanup(&((me->buffer)[iter]));

iter++;

}

}

74 Chapter 2

if(me->itsNotificationHandle != NULL)

{

me->itsNotificationHandle = NULL;

}

}

Code Listing 2-12: TMDQueue Implementation File with Observer Pattern

The code for the notification handle class is straightforward, as can be seen in Code Listing 2
13 and Code Listing 2-14.

#ifndef NotificationHandle_H

#define NotificationHandle_H

#include <stdio.h>

#include "ECGPkg.h"

typedef struct NotificationHandle NotificationHandle;

struct NotificationHandle {

UpdateFuncPtr updateAddr;

struct NotificationHandle* itsNotificationHandle;

};

/* Constructors and destructors:*/

void NotificationHandle_Init(NotificationHandle* const me);

void NotificationHandle_Cleanup(NotificationHandle* const me);

struct NotificationHandle*

NotificationHandle_getItsNotificationHandle(const

NotificationHandle* const me);

void

NotificationHandle_setItsNotificationHandle(NotificationHandle*

const me, struct NotificationHandle* p_NotificationHandle);

NotificationHandle * NotificationHandle_Create(void);

void NotificationHandle_Destroy(NotificationHandle* const me);

#endif

Code Listing 2-13: NotificationHandle.h Header File

#include "NotificationHandle.h"

static void cleanUpRelations(NotificationHandle* const me);

void NotificationHandle_Init(NotificationHandle* const me) {

me->itsNotificationHandle = NULL;

}

Embedded Programming with The HarmonyTM for Embedded RealTime Process 75

void NotificationHandle_Cleanup(NotificationHandle* const me) {

cleanUpRelations(me);

}

struct NotificationHandle*

NotificationHandle_getItsNotificationHandle(const

NotificationHandle* const me) {

return (struct NotificationHandle*)me->itsNotificationHandle;

}

void

NotificationHandle_setItsNotificationHandle(NotificationHandle*

const me, struct NotificationHandle* p_NotificationHandle) {

me->itsNotificationHandle = p_NotificationHandle;

}

NotificationHandle * NotificationHandle_Create(void) {

NotificationHandle* me = (NotificationHandle *)

malloc(sizeof(NotificationHandle));

if(me!=NULL)

{

NotificationHandle_Init(me);

}

return me;

}

void NotificationHandle_Destroy(NotificationHandle* const me) {

if(me!=NULL)

{

NotificationHandle_Cleanup(me);

}

free(me);

}

static void cleanUpRelations(NotificationHandle* const me) {

if(me->itsNotificationHandle != NULL)

{

me->itsNotificationHandle = NULL;

}

}

Code Listing 2-14: NotificationHandle.c Implementation File

Finally, let’s look at just one of the clients to see how the client side of the observer pattern is
implemented. Code Listing 2-15 shows the implementation file for the HistogramDisplay class
with the client side of the observer pattern (specifically, it calls the TMDQueue_subscribe()

operation in its initializer).

#include "HistogramDisplay.h"

#include "TimeMarkedData.h"

#include "TMDQueue.h"

76 Chapter 2

static void cleanUpRelations(HistogramDisplay* const me);

void HistogramDisplay_Init(HistogramDisplay* const me) {
me->itsTMDQueue = NULL;
{

/* call subscribe to connect to the server */
TMDQueue_subscribe(me->itsTMDQueue,

HistogramDisplay_update);
}

}

void HistogramDisplay_Cleanup(HistogramDisplay* const me) {
/* remove yourself from server subscription list */
TMDQueue_unsubscribe(me->itsTMDQueue,

HistogramDisplay_update);
cleanUpRelations(me);

}

void HistogramDisplay_update(HistogramDisplay* const me, const struct TimeMarkedData
tmd) {

printf(" Histogram -> TimeInterval: %d DataValue: %d\n", tmd.timeInterval, tmd.
dataValue);
}

void HistogramDisplay_updateHistogram(HistogramDisplay* const me) {
}

struct TMDQueue* HistogramDisplay_getItsTMDQueue(const HistogramDisplay* const me) {
return (struct TMDQueue*)me->itsTMDQueue;

}

void HistogramDisplay_setItsTMDQueue(HistogramDisplay* const me,
struct TMDQueue* p_TMDQueue) {

me->itsTMDQueue = p_TMDQueue;
}

HistogramDisplay * HistogramDisplay_Create(void) {
HistogramDisplay* me = (HistogramDisplay *)

malloc(sizeof(HistogramDisplay));
if(me!=NULL)

{
HistogramDisplay_Init(me);

}
return me;

}

void HistogramDisplay_Destroy(HistogramDisplay* const me) {
if(me!=NULL)

{
HistogramDisplay_Cleanup(me);

}

free(me);

}

Embedded Programming with The HarmonyTM for Embedded RealTime Process 77

static void cleanUpRelations(HistogramDisplay* const me) {

if(me->itsTMDQueue != NULL)

{

me->itsTMDQueue = NULL;

}

}

Code Listing 2-15: HistogramDisplay.c Implementation File with Observer Pattern

To summarize, we created a correctly functioning code base and then decided how we
wanted to optimize it. We did a miniature trade study to look at some different alternatives
and how differently they optimized our weighted set of design criteria. In this case, the
observer pattern had the best results, so we updated our code base to include the pattern.
Simple, eh?

2.2 The Approach
This book provides many different patterns for use in embedded systems, as you will see in the
following chapters. In each chapter, a number of patterns are presented. Each pattern follows
the same basic presentation style and is presented with nine basic elements:

•	 Abstract
The abstract provides an overview of the pattern and why you might care, including an
overview of the problems it addresses, the solution structure, and the key consequences.

•	 Problem
This section discusses the problem context and the optimizations provided by the pattern.

•	 Applicability
This section gives a list of conditions required for the pattern to be applicable.

•	 Pattern structure
The pattern structure shows the structural elements within the pattern, their roles, and their
relations. Each pattern will be shown using a UML class diagram.

•	 Collaboration role definitions
This section details the role each structural element plays in the pattern and its
responsibilities.

•	 Consequences
The consequences are a key aspect of the pattern description. This section identifies both
the benefits and the costs of using the pattern.

•	 Implementation strategies
Patterns can be implemented in different ways. This section discusses some
implementation alternatives.

78 Chapter 2

•	 Related patterns
This section provides references to other patterns in the book that address similar problems,
possibly with different applicability criteria and consequences.

•	 Example
Each pattern will be illustrated with an example. Both a UML diagram and source code will
be provided with the pattern.

2.3 What’s Coming Up
The remaining chapters of this book present design patterns in a number of subject areas of
particular interest to embedded C developers. Chapter 3 focuses on design patterns for
controlling hardware. Chapter 4 is about concurrency with embedded C, including not only
basic scheduling patterns but patterns to share resources across threads and to avoid deadlock.
Chapter 5 deals with state machines, an important but underutilized tool in the embedded
toolbox, while Chapter 6 looks at safety and reliability.

CHAPTER 3

Design Patterns for Accessing Hardware

Chapter Outline
3.1 Basic Hardware Access Concepts 81

3.2 Hardware Proxy Pattern 85

3.2.1 Abstract 85

3.2.2 Problem 86

3.2.3 Pattern Structure 86

3.2.4 Collaboration Roles 86

3.2.4.1 Hardware Device 86

3.2.4.2 Hardware Proxy 86

3.2.4.3 Proxy Client 88

3.2.5 Consequences 88

3.2.6 Implementation Strategies 89

3.2.7 Related Patterns 89

3.2.8 Example 89

3.3 Hardware Adapter Pattern 96

3.3.1 Abstract 96

3.3.2 Problem 96

3.3.3 Pattern Structure 96

3.3.4 Collaboration Roles 96

3.3.4.1 Adapter Client 96

3.3.4.2 Hardware Adapter 96

3.3.4.3 Hardware Interface to Client 97

3.3.4.4 Hardware Device 97

3.3.4.5 Hardware Proxy 97

3.3.5 Consequences 97

3.3.6 Implementation Strategies 98

3.3.7 Related Patterns 98

3.3.8 Example 98

3.4 Mediator Pattern 100

3.4.1 Abstract 100

3.4.2 Problem 100

3.4.3 Pattern Structure 101

3.4.4 Collaboration Roles 101

3.4.4.1 Collaborator Interface 101

3.4.4.2 Mediator 101

3.4.4.3 Specific Collaborator 102

3.4.5 Consequences 102

Design Patterns for Embedded Systems in C
DOI:10.1016/B978-1-85617-707-8.00003-0
Copyright © 2011 Elsevier Inc. 79

80 Chapter 3

3.4.6 Implementation Strategies 102

3.4.7 Related Patterns 102

3.4.8 Example 103

3.5 Observer Pattern 111

3.5.1 Abstract 111

3.5.2 Problem 112

3.5.3 Pattern Structure 112

3.5.4 Collaboration Roles 112

3.5.4.1 AbstractClient Interface 112

3.5.4.2 AbstractSubject Interface 113

3.5.4.3 ConcreteClient 113

3.5.4.4 ConcreteSubject 113

3.5.4.5 Datum 114

3.5.4.6 NotificationHandle 114

3.5.5 Consequences 114

3.5.6 Implementation Strategies 114

3.5.7 Related Patterns 115

3.5.8 Example 115

3.6 Debouncing Pattern 122

3.6.1 Abstract 123

3.6.2 Problem 123

3.6.3 Pattern Structure 123

3.6.4 Collaboration Roles 123

3.6.4.1 ApplicationClient 124

3.6.4.2 BouncingDevice 124

3.6.4.3 Debouncer 124

3.6.4.4 DebouncingTimer 125

3.6.5 Consequences 125

3.6.6 Implementation Strategies 125

3.6.7 Related Patterns 126

3.6.8 Example 126

3.7 Interrupt Pattern 130

3.7.1 Abstract 130

3.7.2 Problem 130

3.7.3 Pattern Structure 131

3.7.4 Collaboration Roles 131

3.7.4.1 InterruptHandler 131

3.7.4.2 InterruptVectorTable 132

3.7.4.3 vectorPtr 132

3.7.5 Consequences 132

3.7.6 Implementation Strategies 134

3.7.7 Related Patterns 135

3.7.8 Example 135

3.8 Polling Pattern 138

3.8.1 Abstract 138

3.8.2 Problem 138

Design Patterns for Accessing Hardware 81

3.8.3 Pattern Structure 138
3.8.4 Collaboration Roles 138

3.8.4.1 ApplicationProcessingElement 139
3.8.4.2 Device 139
3.8.4.3 OpportunisticPoller 140
3.8.4.4 PeriodicPoller 140
3.8.4.5 PollDataClient 141
3.8.4.6 PollTimer 141

3.8.5 Consequences 141
3.8.6 Implementation Strategies 141
3.8.7 Related Patterns 142
3.8.8 Example 142

3.9 So, What Did We Learn? 147

Patterns in this chapter:

Hardware Proxy Pattern – Encapsulate the hardware into a class or struct

Hardware Adapter Pattern – Adapt between a required and a provided interface

Mediator Pattern – Coordinate complex interactions

Observer Pattern – Support efficient sensor data distribition

Debouncing Pattern – Reject intermittent hardware signals

Interrupt Pattern – Handle high-ugency hardware signals

Polling Pattern – Periodically check for new sensor data

3.1 Basic Hardware Access Concepts
Probably the most distinguishing property of embedded systems is that they must access
hardware directly. The whole point of an embedded system is that the software is embedded in
a “smart device” that provides some specific kind of service, and that requires accessing
hardware. Broadly, software-accessible hardware can be categorized into four kinds – infra
structure, communications, sensors, and actuators.

Infrastructure hardware refers to the computing infrastructure and devices on which the soft
ware is executing. This includes not only the CPU and memory, but also storage devices,
timers, input devices (such as keyboards, knobs, and buttons), user output devices (printers,
displays, and lights), ports, and interrupts. Most of this hardware is not particularly application
specific and may be located on the same motherboard, on daughterboards with high-speed
access connections, or as other boards sharing a common backplane.

Communications hardware refers to hardware used to facilitate communication between different
computing devices, such as standard (nonembedded) computers, other embedded systems,

82 Chapter 3

sensors, and actuators. Usually this means wired or wireless communications subsystems such as
RS-232, RS-485, Ethernet, USB, 802.11x, or some other such facility. In embedded systems,
DMA (Direct Memory Access) and multiported memory is sometimes used as well for this
purpose, somewhat blurring the distinction between infrastructure and communications hardware.

Lastly, we have devices that monitor or manipulate the physical universe – these are the sensors
and actuators. Sensors use electronic, mechanical, or chemical means for monitoring the status of
physical phenomena, such as the rate of a heart beat, position of an aircraft, the mass of an object,
or the concentration of a chemical. Actuators, on the other hand, change the physical state of
some real-world element. Typical actuators are motors, heaters, generators, pumps, and switches.

All of these kinds of hardware are usually initialized, tested, and configured – tasks normally
performed by the embedded software either on start-up or during execution, or both. All of
these hardware elements are managed by the embedded software, provide commands or data to
the software, or receive commands or data from the software.

This chapter will assume that you have enough hardware background to understand the
hardware terms used in this book such as bus, CPU, RAM, ROM, EPROM, EEPROM, and
Flash. If you want to know more, there any many excellent books on the topic, including books
by David Simons1, Michael Barr and Anthony Massa2, Michael Pont3, and Jack Ganssle4.
Instead, we will focus on common ways to develop embedded C applications to solve problems
that commonly arise with the management and manipulation of such hardware elements. Some
hardware-related concepts that we will talk briefly about are bit fields, ports, and interrupts.

It is exceedingly common to have hardware that uses bit fields to specify commands to the hardware
or to return data. A bit field is a continuous block of bits (one or more) within an addressable
memory element (e.g., a byte or word) that together has some semantic meaning to the hardware
device. For example, an 8-bit byte might be mapped to a hardware device into four different fields:

0 0 0000 00

The bits represent the following information to or from the memory-mapped hardware device:

Bit
Range

Access Name Description

0 Write only Enable bit 0 = disable device, 1 = enable device
1 Read only Error status bit 0 = no error, 1 = error present
2–5 Write only Motor speed Range 0000 = no speed to 1111 (16d) top speed
6–7 Write only LED color 00 (0d) = OFF 01 (1d) = GREEN 10 (2d) = YELLOW 11 (3d) = RED

1 Simon, D., 1999. An Embedded Software Primer. Addison-Wesley.

2 Barr, M. Massa, A., 2007. Programming Embedded Systems with C and GNU Development Tools. O’Reilly.

3 Pont, M.J., 2002. Embedded C. Addison-Wesley.

4 Ganssle, J., 2007. Embedded Systems: World Class Designs. Newnes.

Design Patterns for Accessing Hardware 83

Bit fields are manipulated with C’s bit-wise operators & (bit-wise AND), | (bit-wise OR), ~ (bit
wise NOT), ^ (bit-wise XOR), >> (right shift), and << (left shift).

Here are some examples of the results of using these bit-wise operators with different masks on
a specific value:

Value 01010101 Value 01010101 Value 01010101
Mask 11111111 Mask 00000000 Mask 00001111
ANDED 01010101 ANDED 00000000 ANDED 00000101

Value 01010101 Value 01010101 Value 01010101
Mask 11111111 Mask 00000000 Mask 00001111
ORED 11111111 ORED 01010101 ORED 01011111

Value 01010101 Value 01010101 Value 01010101
Mask 11111111 Mask 00000000 Mask 00001111
XORED 10101010 XORED 01010101 XORED 01011010

A common related C idiom is to use #define to create bit masks for ANDing and ORing and
give them meaningful names. For example, we might create a set of bit masks for common
manipulations of the memory mapped device above, such as:

#include <stdlib.h>

#include <stdio.h>

#define TURN_OFF (0x00)

#define INITIALIZE (0x61)

#define RUN (0x69)

#define CHECK_ERROR (0x02)

#define DEVICE_ADDRESS (0x01FFAFD0)

void emergencyShutDown(void){
printf("OMG We’re all gonna die!\n");

}

int main() {
unsigned char* pDevice;

pDevice = (unsigned char *)DEVICE_ADDRESS; // pt to device

// for testing you can replace the above line with

// pDevice = malloc(1);

*pDevice = 0xFF; // start with all bits on

printf ("Device bits %X\n", *pDevice);

*pDevice = *pDevice & INITIALIZE; // and the bits into

printf ("Device bits %X\n", *pDevice);

if (*pDevice & CHECK_ERROR) { // system fail bit on?

emergencyShutDown();

abort();

}

else	 {
*pDevice = *pDevice & RUN;

84 Chapter 3

printf (“Device bits %X\n”, *pDevice);

};

return 0;

};

Code Listing 3-1: Manipulating bit-oriented memory mapped hardware

The left and right shift operators are useful for setting or testing particular bits in isolation as
well as for processing serial bit data. For example, the expression “1<<3” sets bit 3 resulting in
the value 8. This is sometimes used in the definition of bits in a mask. For example, the mask
CHECK_ERROR in Code Listing 3-1 could have been written:

#define CHECKERROR (1<<1)

Bit fields in C offer another way to represent bit-mapped fields in device interfaces. This syntax
represents variable-length bit fields as fields within a struct. The ‘:’ operator separates the name
of the field from its length in the declaration. For example, see Code Listing 3-2.

#include <stdlib.h>

#include <stdio.h>

int main() {
typedef struct _statusBits {

unsigned enable : 1;

unsigned errorStatus : 1;

unsigned motorSpeed : 4;

unsigned LEDColor : 2;

} statusBits;

statusBits status;

printf("size = %d\n",sizeof(status));

status.enable = 1;

status.errorStatus = 0;

status.motorSpeed = 3;

status.LEDColor = 2;

if (status.enable) printf("Enabled\n");

else printf ("Disabled\n");

if (status.errorStatus) printf("ERROR!\n");

else printf("No error\n");

printf ("Motor speed %d\n",status.motorSpeed);

printf ("Color %d\n",status.LEDColor);

return 0;

};

Code Listing 3-2: Bit fields in C

Design Patterns for Accessing Hardware 85

There are a couple of problems with bit fields in C. First, bit ordering is compiler- and processor-
dependent. Further, the compiler may enforce byte padding rules, meaning that it may not map
onto a memory mapped device as you expect. For example, the GNU C compiler returns size of
status in Code Listing 3-2 to be 4 bytes even though the size of an unsigned char is only
1 byte.

Even worse, because most CPUs must write a byte or word at a time, bit fields may not be
written in an atomic step, leading to thread safety issues if separate mutexes are used for
different bit fields.

Another potential problem with using bit fields is that it is impossible to cast between a scalar
and a user-defined struct. Thus, the following is disallowed5:

Unsigned char f;
f = 0xF0;
status = (statusBits) f;

Let’s turn our attention now to a number of design patterns that have proven themselves
useful for the manipulation of hardware. The Hardware Proxy Pattern, discussed next, is an
archetypal pattern for the abstraction of hardware for the purpose of encapsulating details
that are likely to change from the usage of the information provided to or by the hardware.
The Hardware Adapter Pattern extends the Hardware Proxy Pattern to provide the ability to
support different hardware interfaces. The Mediator Pattern supports coordination of
multiple hardware devices to achieve a system level behavior. The Observer Pattern is a
way of distributing sensed data to the software elements that need it. The Debouncing and
Interrupt Patterns are simple reusable approaches to interface with hardware devices. The
Timer Interrupt Pattern extends the Interrupt timer to provide accurate timing for embedded
systems.

3.2 Hardware Proxy Pattern
The Hardware Proxy Pattern creates a software element responsible for access to a piece of
hardware and encapsulation of hardware compression and coding implementation.

3.2.1 Abstract

The Hardware Proxy Pattern uses a class (or struct) to encapsulate all access to a hardware
device, regardless of its physical interface. The hardware may be memory, port, or interrupt

5 Although you can get around that by doing something as circuitous as

status = *(statusBits*)&f

(that is, casting the address of f (unsigned char) to be an address of the structure type statusBits) but I can hardly
recommend that!

86 Chapter 3

mapped, or may even be mapped via a serial connection, bus, network, or wireless link. The
proxy publishes services that allow values to be read from and written to the device, as well as
initialize, configure, and shut down the device as appropriate. The proxy provides an encoding
and connection-independent interface for clients and so promotes easy modification should the
nature of the device interface or connection change.

3.2.2 Problem

If every client accesses a hardware device directly, problems due to hardware changes are
exacerbated. If the bit encoding, memory address, or connection technology changes, then
every client must be tracked down and modified. By providing a proxy to sit between the
clients and the actual hardware, the impact of hardware changes is greatly limited, easing such
modifications. For easiest maintenance, the clients should be unaware of bit encoding,
encryption, and compression used by the device; these details should be managed by the
Hardware Proxy with internal private functions.

3.2.3 Pattern Structure

The pattern structure is quite simple as can be seen in Figure 3-16. There may be many clients
but a single Hardware Proxy per device being controlled. The proxy contains both public
functions and private, encapsulated functions and data. The device is represented as a void* in
the figure, but it should be appropriately typed for the device.

Figure 3-1 Hardware Proxy Pattern

6 Each of these patterns will be shown as a UML diagram and code will be provided for the examples. The
Appendix provides a short overview of the UML notation.

Design Patterns for Accessing Hardware 87

3.2.4 Collaboration Roles

This section describes the roles for this pattern.

3.2.4.1 Hardware Device
This element represents the actual hardware. As such, you will not write C code for this
element, but it is present just to aid with understanding the diagram. The association shown
between the Hardware Device and the Hardware Proxy is realized via a software-addressable
hardware interface, such as a port address, memory address, or interrupt.

3.2.4.2 Hardware Proxy
This is the primary class (or function) in the system. It has both data and functions that are
customized to the device at hand, although usually each one has an initialize(), configure(), and
disable() function. The other public functions provide read access to values from the device or
set values sent to the device. Although the pattern structure has a single access() and mutate()
function, it is common to have several such functions, each bearing the name of the value being
read or set.

The key features7 of the class include:

access()

This public function returns a particular value from the device. In most cases, the class will
contain a separate function for each separately-identifiable piece of information desired from
the device. This operation usually calls the unmarshal() function prior to returning the
retrieved values to the client.

configure()

This public function provides a means by which the device may be configured. Although in the
general pattern no parameter list can be provided, this function almost always takes a list of
parameters that specify the proper operating state of the device.

disable()

This public function provides a means by which the device may be safely turned off or
disabled. It may or may not have parameters depending upon the device characteristics.

deviceAddr

This private variable provides low-level direct access to the hardware. In the pattern it is shown
as a void* but it may be a memory mapped integer (int*) or other primitive type, a port-
mapped device port number, or some other location identified. If more complex means are used

7	 By the term feature, I am referring primarily to data elements (attributes or variables), operations and functions,
states, and event receptions.

88 Chapter 3

to access the device, such as an RS232 serial port or an Ethernet connection, then this data type
and its access method will be more complex. In any event, the public functions provided by the
Hardware Proxy completely hide how the proxy connects to the actual device. This variable is
not directly accessible by the client.

initialize()

This public function enables and initializes the device prior to first use. It is common for this
function to have no parameters but in some cases it may need values provided by the client.

marshal()

This private function takes parameters from various other functions and performs any required
encryption, compression, or bit-packing required to send the data to the device. This ensures
that the peculiarities of the device interface are hidden from the client. Data in the format
required by the actual device are known as “marshaled data” or are said to be in “native
format.” Data that are in a form that is easily manipulated by software are said to be
“unmarshaled” or in “presentation format.” This function is not accessible by the client since
native format is hidden from the clients.

mutate()

This public function writes data values to the device. This function always has one or more
input parameters. It usually calls the marshal() operation prior to writing the value to the
device.

unmarshal()

This private function performs any necessary unpacking, decryption, and decompression of the
data retrieved from the device prior to returning them to the client in presentation format. This
ensures that the peculiarities of the device interface are hidden from the client. This function is
not accessible by the client.

3.2.4.3 Proxy Client

The proxy client “knows about” the Hardware Proxy and invokes its services to access the
hardware device.

3.2.5 Consequences

The pattern is extremely common and provides all the benefits of encapsulation of the hardware
interface and encoding details. It provides flexibility for the actual hardware interface to change
radically with absolutely no changes in the clients. This is because the hardware details are all
encapsulated within the Hardware Proxy. This means that the proxy clients are usually unaware
of the native format of the data and manipulate them only in presentation format.

Design Patterns for Accessing Hardware 89

This can, however, have a negative impact on run-time performance. It may sometimes be more
time efficient for the clients to know the encoding details and manipulate the data in their native
format. However, this degrades the maintainability of the system because now the clients need
to be modified should the hardware interface or encoding change.

3.2.6 Implementation Strategies

As discussed in Chapter 1, classes may be implemented in different ways in C ranging from
simple files to using struct to store class attributes, to using virtual function tables that support
true polymorphism. All of those approaches can be used to implement this very simple pattern.

Usually, a Hardware Proxy supports all features of a specific device and a different Hardware
Proxy is used for each separate device, but this isn’t an absolute rule. Separation into different
devices means that the devices can follow independent maintenance paths and so is very
flexible for the future.

In general, it is preferable to hide the bit-encoding, encryption, and data compression of the
actual hardware away from the application software8. However, it is possible to implement the
pattern without the marshal() and unmarshal() functions by making the native format
visible to the clients.

3.2.7 Related Patterns

The simple implementation of this pattern doesn’t implement anything for thread safety. It can
be combined with the Critical Region, Guarded Call, or Queuing patterns to provide thread
safety. For deadlock avoidance, it can be combined with the Ordered Locking or Simultaneous
Locking patterns.

3.2.8 Example

The example, shown in Figure 3-2, is of a system with a motor with a memory-mapped interface.
The interface is 16 bits wide and is detailed in the figure comment. In addition to the motor proxy,
there are two clients in the example. The first of these is a motor controller than makes high-level
decisions about what to do with the motor direction, speed, and how to handle errors. The motor
display client is concerned with providing user feedback of the speed, direction, and status of the
motor. Most of the action, of course, is in the Hardware Proxy per se.

The intention of the motor proxy is to provide the services to access the hardware in a hardware
interface-independent fashion so that the two clients needn’t worry about – or even be aware of

8	 It may not be in high-security applications however. In those cases, it may be necessary to always have the data
stored in encrypted formats to make it more difficult to violate data security protocols.

90 Chapter 3

Figure 3-2 Hardware Proxy example

– the specific encoding of the bits. To this end, several types of services are offered by the
motor proxy:

Motor Management Functions

•	 configure() – this function sets up the memory-mapped address of the motor and the length
of the rotary arm; this function must be called first

•	 disable() – this function turns off the motor but keeps the set values intact
•	 enable() – this function turns the motor on with the current set values
•	 initialize() – this function turns on the motor to default set values (off)

Motor Status Functions

•	 accessMotorDirection() – this function returns the current motor direction (off, forward, or
reverse)

•	 accessMotorSpeed() – this function returns the speed of motor

Design Patterns for Accessing Hardware 91

Motor Control Functions

•	 writeMotorSpeed() – this function sets the speed of the motor and adjusts for the length of
the rotary arm (if set)

Motor Error Management Functions

•	 clearErrorStatus() – this function clears all error bits
•	 accessMotorState() – this function returns the error status

Internal Data Formatting Functions (private)

These functions aren’t provided to the clients, but are used internally to exchange the data
between native and presentation formats.

•	 marshal() – converts presentation (client) data format to native (motor) format
•	 unmarshal() – converts native (motor) data format to presentation (client) format

The C source code for the data types and MotorProxy class are shown in the next several code
segments. Code Listing 3-3 shows the data typing for the DirectionType while Code Listing 3-4
shows the presentation client format for MotorData.

#ifndef HWProxyExample_H

#define HWProxyExample_H

struct MotorController;

struct MotorData;

struct MotorDisplay;

struct MotorProxy;

typedef enum DirectionType {

NO_DIRECTION,

FORWARD,

REVERSE

} DirectionType;

#endif

Code Listing 3-3: HardwareProxyExample.h

#ifndef MotorData_H

#define MotorData_H

#include "HWProxyExample.h"

typedef struct MotorData MotorData;

struct MotorData {

unsigned char on_off;

DirectionType direction;

unsigned int speed;

unsigned char errorStatus;

unsigned char noPowerError;

92 Chapter 3

unsigned char noTorqueError;

unsigned char BITError;

unsigned char overTemperatureError;

unsigned char reservedError1;

unsigned char reservedError2;

unsigned char unknownError;

};

#endif

Code Listing 3-4: MotorData.h

The next two code listings show the header and implementation files for the MotorProxy class
itself including both the data structure and the member functions.

#ifndef MotorProxy_H

#define MotorProxy_H

#include "HWProxyExample.h"

#include "MotorData.h"

/* class MotorProxy */

typedef struct MotorProxy MotorProxy;

/* This is the proxy for the motor hardware. */

/* Note that the speed of the motor is adjusted for the length of the rotary arm */

/* to keep a constant speed at the end of the arm. */

struct MotorProxy {

unsigned int* motorAddr;

unsigned int rotaryArmLength;

};

void MotorProxy_Init(MotorProxy* const me);

void MotorProxy_Cleanup(MotorProxy* const me);

DirectionType* MotorProxy_accessMotorDirection(MotorProxy* const me);

unsigned int MotorProxy_accessMotorSpeed(MotorProxy* const me);

unsigned int MotorProxy_aceessMotorState(MotorProxy* const me);

/* keep all settings the same but clear error bits */ void MotorProxy_clearErrorStatus

(MotorProxy* const me);

/* Configure must be called first, since it sets up the */

/* address of the device. */

void MotorProxy_configure(MotorProxy* const me, unsigned int length, unsigned int*

location);

/* turn motor off but keep original settings */

void MotorProxy_disable(MotorProxy* const me);

/* Start up the hardware but leave all other settings of the */ /* hardware alone */ void

MotorProxy_enable(MotorProxy* const me);

/* precondition: must be called AFTER configure() function. */ /* turn on the hardware to

a known default state. */ void MotorProxy_initialize(MotorProxy* const me);

/* update the speed and direction of the motor together */

void MotorProxy_writeMotorSpeed(MotorProxy* const me, const DirectionType* direction,

unsigned int speed);

Design Patterns for Accessing Hardware 93

MotorProxy * MotorProxy_Create(void); void MotorProxy_Destroy(MotorProxy* const me);
#endif

Code Listing 3-5: MotorProxy.h

#include "MotorProxy.h"

/* class MotorProxy */

/* This function takes a MotorData structure and creates */

/* a device-specific unsigned int in device native format. */

static unsigned int marshal(MotorProxy* const me, const struct MotorData* mData);

static struct MotorData* unmarshal(MotorProxy* const me, unsigned int encodedMData);

void MotorProxy_Init(MotorProxy* const me) { me->motorAddr = NULL;

}

void MotorProxy_Cleanup(MotorProxy* const me) {

}

DirectionType* MotorProxy_accessMotorDirection(MotorProxy* const me) {

MotorData mData;

if (!me->motorData) return 0;

mData = unmarshall(*me->motorAddr);

return mData.direction;

}

unsigned int MotorProxy_accessMotorSpeed(MotorProxy* const me) {

MotorData mData;

if (!me->motorData) return 0;

mData = unmarshall(*me->motorAddr);

return mData.speed;

}

unsigned int MotorProxy_aceessMotorState(MotorProxy* const me) {

MotorData mData;

if (!me->motorData) return 0;

mData = unmarshall(*me->motorAddr);

return mData.errorStatus;

}

void MotorProxy_clearErrorStatus(MotorProxy* const me) {

if (!me->motorData) return;

*me->motorAddr &= 0xFF;

}

void MotorProxy_configure(MotorProxy* const me, unsigned int length, unsigned int* location) {
me->rotaryArmLength = length;
me->motorAddr = location;

}

void MotorProxy_disable(MotorProxy* const me) {

// and with all bits set except for the enable bit

if (!me->motorData) return;

me->MotorAddr & = 0xFFFE;

}

94 Chapter 3

void MotorProxy_enable(MotorProxy* const me) {
if (!me->motorData) return;
*me->motorAddr |= 1;

}

void MotorProxy_initialize(MotorProxy* const me) {
MotorData mData;
if (!me->motorData) return;
mData.on_off = 1;
mData.direction = 0;
mData.speed = 0;
mData.errorStatus = 0;
mData.noPowerError) = 0;
mData.noTorqueError) = 0;
mData.BITError) = 0;
mData.overTemperatureError) = 0;
mData.reservedError1) = 0;
mData.reservedError2) = 0;
Data.unknownError) = 0;
*me->motorAddr = marshall(mData);

}

void MotorProxy_writeMotorSpeed(MotorProxy* const me, const DirectionType* direction,
unsigned int speed) {

MotorData mData
double dPi, dArmLength, dSpeed, dAdjSpeed;
if (!me->motorData) return; mData = unmarshall(*me->motorAddr); mData.direction =

direction;
// ok, let’s do some math to adjust for
// the length of the rotary arm times 10
if (me->rotaryArmLength > 0) {

dSpeed = speed;

dArmLength = me->rotaryArmLength;

dAdjSpeed = dSpeed / 2.0 / 3.14159 / dArmLength * 10.0;

mData.speed = (int)dAdjSpeed;

}

else

mData.speed = speed;

*me->motorData = marshal(mData);

return;

}

static unsigned int marshal(MotorProxy* const me, const struct MotorData* mData) {
unsigned int deviceCmd;
deviceCmd = 0; // set all bits to zero
if (mData.on_off) deviceCmd |= 1; // OR in the appropriate bit
if (mData.direction == FORWARD)

deviceCmd |= (2 << 1);

else if (mData.direction == REVERSE)

deviceCmd |= (1 << 1);

if (mData.speed < 32 && mData.speed >= 0)

deviceCmd |= mData.speed << 3;

Design Patterns for Accessing Hardware 95

if (mData.errorStatus) deviceCmd |= 1 << 8;

if (mData.noPowerError) deviceCmd |= 1 << 9;

if (mData.noTorqueError) deviceCmd |= 1 << 10;

if (mData.BITError) deviceCmd |= 1 << 11;

if (mData.overTemperatureError) deviceCmd |= 1 << 12;

if (mData.reservedError1) deviceCmd |= 1 << 13;

if (mData.reservedError2) deviceCmd |= 1 << 14;

if (mData.unknownError) deviceCmd |= 1 << 15;

return deviceCmd;

}

static struct MotorData* unmarshal(MotorProxy* const me, unsigned int encodedMData) {
MotorData mData
int temp;

mData.on_off = encodedMData & 1;

temp = (encodedMData & (3 << 1)) >> 1; if (temp == 1)

mData.direction = REVERSE;

else if (temp == 2)

mData.direction = FORWARD;

else

mData.direction = NO_DIRECTION;

mData.speed = encodedMData & (31 << 3);

mData.errorStatus = encodedMData & (1 << 8);

mData.noPowerError) = encodedMData & (1 << 9);

mData.noTorqueError) = encodedMData & (1 << 10); mData.BITError) = encodedMData & (1 <<

11); mData.overTemperatureError) = encodedMData & (1 << 12); mData.reservedError1) =

encodedMData & (1 << 13); mData.reservedError2) = encodedMData & (1 << 14);

Data.unknownError) = encodedMData & (1 << 15);

return mData;

}

MotorProxy * MotorProxy_Create(void) {

MotorProxy* me = (MotorProxy *) malloc(sizeof(MotorProxy));

if(me!=NULL)

{

MotorProxy_Init(me);

}

return me;

}

void MotorProxy_Destroy(MotorProxy* const me) {

if(me!=NULL)

{

MotorProxy_Cleanup(me);

}

free(me);

}

Code Listing 3-6: MotorProxy.c

96 Chapter 3

3.3 Hardware Adapter Pattern
The Hardware Adapter Pattern provides a way of adapting an existing hardware interface into
the expectations of the application. This pattern is a straightforward derivative of the Adapter
Pattern.

3.3.1 Abstract

The Hardware Adapter Pattern is useful when the application requires or uses one interface, but
the actual hardware provides another. The pattern creates an element that converts between the
two interfaces.

3.3.2 Problem

While hardware that performs similar functions tend to have similar interfaces, often the
information they need and the set of services differ. Rather than rewrite the clients of the
hardware device to use the provided interface, an adapter is created that provides the expected
interface to the clients while converting the requests to and from the actual hardware interface.

The Hardware Adapter Pattern is useful when you have hardware that meets the semantic need
of the system but that has an incompatible interface. The goal of the pattern is to minimize the
reworking of code when one hardware design or implementation is replaced with another.

3.3.3 Pattern Structure

The pattern structure is shown in Figure 3-3. The pattern extends the Hardware Proxy Pattern
by adding a Hardware Adapter and explicitly showing the interface the client expects the
hardware to support.

3.3.4 Collaboration Roles

This section describes the roles for this pattern.

3.3.4.1 Adapter Client
The adapter client expects to be invoking the services of a software element that represents the
hardware, as specified by the Hardware Interface to Client interface. It is an element in the
application system that expects to control, monitor, or use the hardware device.

3.3.4.2 Hardware Adapter
The Hardware Adapter performs “impedance matching” between the client and the Hardware
Proxy. That is, service requests made by the Adapter Client are converted into a sequence of
services that are available from the Hardware Proxy. This potentially includes both factoring of
the service invocations and reformatting and restructuring the data.

Design Patterns for Accessing Hardware 97

Figure 3-3 Hardware Adapter Pattern

3.3.4.3 Hardware Interface to Client
This interface represents the set of services and parameter lists that the client expects the
Hardware Proxy to provide. As an interface, it is a collection of service specifications and has no
implementation. The implementation in this case is provided by the Hardware Adapter Class.

3.3.4.4 Hardware Device
This element is described in the Hardware Proxy Pattern. See Section 3.2.4.1.

3.3.4.5 Hardware Proxy
This element is described in the Hardware Proxy Pattern. See Section 3.2.4.2.

3.3.5 Consequences

The use of this pattern allows various Hardware Proxies and their related hardware devices to
be used as-is in different applications, while at the same time allowing existing applications to
use different hardware devices without change. The key is that the adapter provides the
connective glue to match the Hardware Proxy to the application. This means that it will be

98 Chapter 3

easier, less error-prone, and faster to change hardware devices for an application or to reuse an
existing hardware device in a new application.

The cost of using the pattern is that it adds a level of indirection and therefore decreases run
time performance slightly.

3.3.6 Implementation Strategies

The classic Design Patterns9 book by Gamma, et. al., identifies two forms for this pattern. The
object adapter form is as shown in Figure 3-3. In this form, the adapter subclasses along one
interface and delegates to the other element (although we use realization in this case rather than
inheritance). In the class adapter form, the Hardware Adapter subclasses from both interfaces
and reimplements the client services in terms of the proxy services that it inherits. This requires
a more elaborate implementation of classes than we’ve been using so far in this book since it
requires the creation of a virtual function table to implement true polymorphism (see Section
1.2.3). The tradeoffs for the two different implementations are subtly different. The class
adapter form is a bit more reusable but requires a more complex implementation in C.

3.3.7 Related Patterns

The Hardware Adapter extends the Hardware Proxy Pattern. The latter pattern encapsulates
hardware interface detail but does not translate service requests into radically different ones.
The Hardware Adapter Pattern adds a level of indirection between the client and the Hardware
Proxy. This allows the clients to be unchanged in the application while at the same time
permitting reuse of existing Hardware Proxies that may also have been created for other
systems. The implementation of the Hardware Proxy and the Hardware Adapter can be merged,
but that undermines the reusability of the Hardware Proxy.

3.3.8 Example

The example is shown graphically in Figure 3-4. This example shows a system that tracks both
oxygen concentration and oxygen flow rates, such as might be found in a medical ventilator.
Two clients are shown. The Gas Display client displays these data for the attending medical
staff. The Gas Mixer client uses these data for the closed loop control of gas delivery. Both are
implemented to use the interface as shown in the iO2Sensor interface. The two services the
clients expect to see are gimmeO2Conc(), which returns an integer in the range of 0–100, and
gimmeO2Flow(), which returns an integer type with units of cc/min.

9	 Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

Design Patterns for Accessing Hardware 99

Figure 3-4 Hardware Adapter example

The system can be delivered with either of two physical sensors. These sensors do much the
same job but they provide different programmatic interfaces. The Acme O2 Sensor Proxy

provides two services. getO2Conc() returns the oxygen concentration in a range of 0–100 as
an unsigned integer. getO2Flow() returns the flow oxygen flow as a scaled integer of 100*
cc/sec. The Ultimate O2 sensor has two similar functions. accessO2Conc() returns
concentration as a double in the range of 0.000 to 1.000 (3 digits of accuracy) and the
accessGasFlow() returns the total gas flow (of which oxygen is just a part) as a double in
liters/hour.

Each Hardware Proxy requires its own adapter to convert to the expected client interface.

The previous pattern showed code for the proxy classes, so this section will only show code for
the adapters. The header files aren’t very interesting, so we will concentrate solely on the
implementation files of the two adapters. The implementation of the Acme O2 Adapter is
shown in Code Listing 3-7 and the implementation for the Ultimate O2 Adapter is given in
Code Listing 3-8.

int AcmeO2Adapter_gimmeO2Conc(AcmeO2Adapter* const me) {
return me->itsAcmeO2SensorProxy->getO2Conc();

}

100 Chapter 3

int AcmeO2Adapter_gimmeO2Flow(AcmeO2Adapter* const me) {

return (me->itsAcmeO2SensorProxy->getO2Flow()*60)/100;

Code Listing 3-7: AcmeO2Adapter.c

int UltimateO2Adapter_gimmeO2Conc(UltimateO2Adapter* const me) {

return int(me->getItsUltimateO2SensorProxy

->accessO2Conc()*100);

}

int UltimateO2Adapter_gimmeO2Flow(UltimateO2Adapter* const me) {

double totalFlow;

// convert from liters/hr to cc/min

totalFlow = me->itsUltimateO2SensorProxy->accessGasFlow() *

1000.0/60.0;

// now return the portion of the flow due to oxygen

// and return it as an integer

return (int)(totalFlow *

me->itsUltimateO2SensorProxy->accessO2Conc());

}

Code Listing 3-8: UltimateO2Adapter.c

3.4 Mediator Pattern
The Mediator Pattern provides a means of coordinating a complex interaction among a set of
elements.

3.4.1 Abstract

The Mediator Pattern is particularly useful for managing different hardware elements when
their behavior must be coordinated in well-defined but complex ways. It is particularly useful
for C applications because it doesn’t require a lot of specialization (subclassing), which can
introduce its own complexities into the implementation.

3.4.2 Problem

Many embedded applications control sets of actuators that must work in concert to achieve the
desired effect. For example, to achieve a coordinated movement of a multi-joint robot arm, all
the motors must work together to provide the desired arm movement. Similarly, using reaction
wheels or thrusters in a spacecraft in three dimensions requires many different such devices
acting at precisely the right time and with the right amount of force to achieve attitude
stabilization.

Design Patterns for Accessing Hardware 101

Figure 3-5 Mediator Pattern

3.4.3 Pattern Structure

The Mediator Pattern uses a mediator class to coordinate the actions of a set of collaborating
devices to achieve the desired overall effect. The Mediator class coordinates the control of the
set of multiple Specific Collaborators (their number is indicated by the ‘*’ multiplicity on the
association between the Mediator and the Specific Collaborator in Figure 3-5). Each Specific
Collaborator must be able to contact the Mediator when an event of interest occurs.

3.4.4 Collaboration Roles

This section describes the roles for this pattern.

3.4.4.1 Collaborator Interface
The Collaborator Interface is a specification of a set of services common to all Specific
Collaborators that may be invoked by the Mediator. For example, it is common to have reset(),
shutdown, initialize() style operations for all the hardware devices to facilitate bringing them all
to a known initial, recovery and/or shutdown state. Each of the common services must be
implemented in each Specific Collaborator (although, of course, the implementation will
usually be unique to each collaborator). If there are no services common to all Specific
Collaborators, then this interface may be omitted.

3.4.4.2 Mediator
The Mediator class coordinates the Specific Collaborators in the pattern. It has a link to each
Specific Collaborator so that it can send messages to it. In addition, each Specific Collaborator
must be able to send the Mediator messages when events of interest occur. The Mediator

102 Chapter 3

provides the coordination logic that would otherwise require Specific Collaborators to coor
dinate among themselves.

3.4.4.3 Specific Collaborator
The Specific Collaborator represents one device and so may be a device driver or Hardware
Proxy. It receives command messages from the Mediator and also sends messages to the
Mediator when events of interest occur.

3.4.5 Consequences

This pattern creates a mediator that coordinates the set of collaborating actuators but without
requiring direct coupling of those devices. This greatly simplifies the overall design by
minimizing the points of coupling and encapsulating the coordination within a single element.
Whenever the Collaborator would have directly contacted another Collaborator, instead it
notifies the Mediator who can decide how to respond as a collective collaborative whole.

Since many embedded systems must react with high time fidelity, delays between the actions
may result in unstable or undesirable effects. It is important that the mediator class can react
within those time constraints. This is of a particular concern when there is two-way colla
boration between the actuators and the mediator.

3.4.6 Implementation Strategies

The Mediator must be able to link to each Specific Collaborator. This can be done with an array
of pointers (the obvious implementation strategy), a separate pointer for each Specific Colla
borator, or a combination of the two. A common rule of thumb is that if a set of Specific
Collaborators are indistinguishable in terms of their use other than their position in the list (e.g.,
they provide a common interface), then an array of pointers is best. If the Specific Collaborators
serve different purposes, then use a separate link for each such Specific Collaborator. The
example in Section 3.4.8 shows the use of both an array and of specific pointers.

It is even possible to have grouped sets of different Specific Collaborators in which each class
within a group provides a common interface.

3.4.7 Related Patterns

This pattern is similar to the Strategy Pattern from the classic Design Patterns book10 and the
architectural Rendezvous Pattern from my Real-Time Design Patterns book11. In this case we
are focusing on its use for detailed hardware coordination.

10 Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

11 Douglass, B.P., 2003. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems. Addison-Wesley.

Design Patterns for Accessing Hardware 103

The Observer Pattern may be used instead of a direct link to the Mediator when there are
multiple clients of the Specific Collaborator or when you wish to hide the Mediator from the
Specific Collaborator.

3.4.8 Example

In this example of a robot system (See Figure 3-6), the Robot Arm Manager receives requests to
grasp objects at specific points in space (x, y, z) and time (t). It first computes an arm trajectory via the
computeTrajectory() function and produces a set of nSteps actions (up to 100). Each action is
composed of a set of commands to each of the seven servos. If the goal is achievable, then Robot
Arm Manager calls executeStep() function nSteps times to step through the computed
action sequence. At each step, any command can return an error code (non-zero) which causes
the graspAt() function to abort with an error code. Note that the computation of the arm path
via the sum of the movements of the various arm joints is a complex exercise in geometry
which, while interesting, is outside the scope of concern for this book. In addition, many paths

Figure 3-6 Mediator Example

104 Chapter 3

Figure 3-7 Flowchart for graspAt() function

may be disallowed for safety reasons (Rule 1: You Can’t Hit the Operator)12, because they may
require a path through a physical object, or may not even be physically possible.

The point of the example is to illustrate the value of the Mediator (RobotArmManager).
Without its coordinating influences, all of the actuators would have to collaborate directly with
their peers. The computation of allowable versus illegal movement paths of the arm would be
divided up among the collaborators and would be very difficult to manage.

Figure 3-7 shows a flowchart for the graspAt() function. This is the primary function that
clients of the RobotArmManager will invoke when they want the arm to move to a position and
grasp (or let go of) something.

The code for the RobotArmManager is given in Code Listing 3-9 and Code Listing 3-10. You
can see that the RobotArmManager coordinates the various servos to achieve the desired arm
actions.

12 An entirely different Rule #1 than in Zombieland. See www.zombieland.com (Sony Pictures, 2009), possibly the
most awesome zombie movie ever.

Design Patterns for Accessing Hardware 105

#include "GraspingManipulator.h"

#include "RotatingArmJoint.h"

#include "SlidingArmJoint.h"

#include "Action.h"

/*## class RobotArmManager */

typedef struct RobotArmManager RobotArmManager;

struct RobotArmManager {

unsigned int currentStep;

unsigned int nSteps;

struct GraspingManipulator* itsGraspingManipulator;

struct RotatingArmJoint *itsRotatingArmJoint[4];

struct SlidingArmJoint *itsSlidingArmJoint[2];

struct Action *itsAction[100];

int status;

};

/* Constructors and destructors:*/

void RobotArmManager_Init(RobotArmManager* const me);

void RobotArmManager_Cleanup(RobotArmManager* const me);

/* Operations */

void RobotArmManager_computeTrajectory(RobotArmManager* const me, int x, int y, int z, int t);

int RobotArmManager_executeStep(RobotArmManager* const me);

int RobotArmManager_graspAt(RobotArmManager* const me, int x, int y, int z, int t);

int RobotArmManager_zero(RobotArmManager* const me);

struct GraspingManipulator*

RobotArmManager_getItsGraspingManipulator(const

RobotArmManager* const me);

void RobotArmManager_setItsGraspingManipulator(RobotArmManager* const me, struct

GraspingManipulator* p_GraspingManipulator);

int RobotArmManager_getItsRotatingArmJoint(const RobotArmManager* const me);

void RobotArmManager_addItsRotatingArmJoint(RobotArmManager* const me, struct

RotatingArmJoint * p_RotatingArmJoint);

void RobotArmManager_removeItsRotatingArmJoint(RobotArmManager* const me, struct

RotatingArmJoint * p_RotatingArmJoint);

void RobotArmManager_clearItsRotatingArmJoint(RobotArmManager* const me);

int RobotArmManager_getItsSlidingArmJoint(const RobotArmManager* const me);

void RobotArmManager_addItsSlidingArmJoint(RobotArmManager* const me, struct

SlidingArmJoint * p_SlidingArmJoint);

void RobotArmManager_removeItsSlidingArmJoint(RobotArmManager* const me, struct

SlidingArmJoint * p_SlidingArmJoint);

void RobotArmManager_clearItsSlidingArmJoint(RobotArmManager* const me);

RobotArmManager * RobotArmManager_Create(void);

void RobotArmManager_Destroy(RobotArmManager* const me);

int RobotArmManager_getItsAction(const RobotArmManager* const me);

void RobotArmManager_addItsAction(RobotArmManager* const me, struct Action * p_Action);

void RobotArmManager_removeItsAction(RobotArmManager* const me, struct Action * p_Action);

void RobotArmManager_clearItsAction(RobotArmManager* const me);

#endif

Code Listing 3-9: RobotArmManager.h

106 Chapter 3

#include "RobotArmManager.h"

static void cleanUpRelations(RobotArmManager* const me);

void RobotArmManager_Init(RobotArmManager* const me) {

int pos;

for(pos = 0; pos < 100; ++pos) {

me->itsAction[pos] = NULL;

}

me->itsGraspingManipulator = NULL;

for(pos = 0; pos < 4; ++pos) {

me->itsRotatingArmJoint[pos] = NULL;

}

for(pos = 0; pos < 2; ++pos) {
me->itsSlidingArmJoint[pos] = NULL;

}
}

void RobotArmManager_Cleanup(RobotArmManager* const me) {
cleanUpRelations(me);

}

/* operation computeTrajectory(x,y,z,t)
This function computes a path for the robot arm to follow to position the manipulator at
the desired end point. It produces a set of up to 100 actions, each action is a set of
commands to the various servos to which the RobotArmManager connects. In actual practice
this is a complex job. The implementation here is just a placeholder.

*/

void RobotArmManager_computeTrajectory(RobotArmManager* const me, int x, int y, int z,

int t) {

Action* ap;

int j;

me->nSteps = 0;

RobotArmManager_clearItsAction(me);

/* move the arm to the position with manipulator open*/

ap = Action_Create();

RobotArmManager_addItsAction(me, ap);

ap->rotatingArmJoint1=1;

ap->rotatingArmJoint2=2;

ap->rotatingArmJoint3=3;

ap->rotatingArmJoint4=4;

ap->slidingArmJoint1=10;

ap->slidingArmJoint2=20;

ap->manipulatorForce=0;

ap->manipulatorOpen=1;

/* grab the object */

ap = Action_Create();

RobotArmManager_addItsAction(me, ap);

ap->rotatingArmJoint1=1;

ap->rotatingArmJoint2=2;

ap->rotatingArmJoint3=3;

Design Patterns for Accessing Hardware 107

ap->rotatingArmJoint4=4;

ap->slidingArmJoint1=10;

ap->slidingArmJoint2=20;

ap->manipulatorForce=10;

ap->manipulatorOpen=0;

/* return to zero position */

ap = Action_Create();

RobotArmManager_addItsAction(me, ap);

ap->rotatingArmJoint1=0;

ap->rotatingArmJoint2=0;

ap->rotatingArmJoint3=0;

ap->rotatingArmJoint4=0;

ap->slidingArmJoint1=0;

ap->slidingArmJoint2=0;

ap->manipulatorForce=10;

ap->manipulatorOpen=0;

me->nSteps = 3;
}

/* operation executeStep()
This operation executes a single step in the chain of actions by
executing all of the commands within the current action

*/
int RobotArmManager_executeStep(RobotArmManager* const me) {

int actionValue = 0;
int step = me->currentStep;
int status = 0;

if (me->itsAction[step]) {
actionValue = me->itsAction[step]->rotatingArmJoint1;
status = RotatingArmJoint_rotate(me->itsRotatingArmJoint[0],actionValue);
if (status) return status;
actionValue = me->itsAction[step]->rotatingArmJoint2;

status = RotatingArmJoint_rotate(me->itsRotatingArmJoint[1],actionValue);

if (status) return status;
actionValue = me->itsAction[step]->rotatingArmJoint3;
status = RotatingArmJoint_rotate(me->itsRotatingArmJoint[2],actionValue);

if (status) return status;
actionValue = me->itsAction[step]->rotatingArmJoint4;
status = RotatingArmJoint_rotate(me->itsRotatingArmJoint[3],actionValue);

if (status) return status;
actionValue = me->itsAction[step]->slidingArmJoint1;
status = SlidingArmJoint_setLength(me->itsSlidingArmJoint[0],actionValue);

if (status) return status;
actionValue = me->itsAction[step]->rotatingArmJoint2;
status = SlidingArmJoint_setLength(me->itsSlidingArmJoint[0],actionValue);

if (status) return status;
actionValue = me->itsAction[step]->manipulatorForce;
status = GraspingManipulator_setMaxForce(me->itsGraspingManipulator,

actionValue);

108 Chapter 3

if (status) return status;
if (me->itsAction[step]->manipulatorOpen)

status = GraspingManipulator_open(me->itsGraspingManipulator);
else

status = GraspingManipulator_close(me->itsGraspingManipulator);
};
return status;

}

/* operation graspAt(x,y,z,t) is the main function called by clients of the
RobotArmManager. This operation:

1. zeros the servos
2. computes the trajectory with a call to computeTrajectory()
3. executes each step in the constructed action list

*/
int RobotArmManager_graspAt(RobotArmManager* const me, int x, int y, int z, int t) {

me->currentStep = �1;

me->nSteps = 0;

RobotArmManager_zero(me);

RobotArmManager_computeTrajectory(me,x,y,z,t);

if (me->nSteps == 0) {
me->status = �1;

}

else {

do {
me->currentStep++;
me->status = RobotArmManager_executeStep(me);

}
while (me->status ==0 && me->currentStep < me->nSteps);

}

return me->status;

}

/* operation zero()
This operation returns all servos to a starting default position

*/
int RobotArmManager_zero(RobotArmManager* const me) {

/* zero all devices */
int j;
for (j=0; j<4; j++){

if (me->itsRotatingArmJoint[j] == NULL) return -1;
if (RotatingArmJoint_zero(me->itsRotatingArmJoint[j])) return -1;
}

for (j=0; j<2; j++) {
if (me->itsSlidingArmJoint[j] == NULL) return -1;

if (SlidingArmJoint_zero(me->itsSlidingArmJoint[j])) return -1;
}

if (me->itsGraspingManipulator == NULL) return -1;
if (GraspingManipulator_open(me->itsGraspingManipulator)) return -1;
return 0;

}

Design Patterns for Accessing Hardware 109

struct GraspingManipulator*
RobotArmManager_getItsGraspingManipulator(const RobotArmManager* const me) {

return (struct GraspingManipulator*)me->itsGraspingManipulator;
}

void RobotArmManager_setItsGraspingManipulator(RobotArmManager* const me, struct
GraspingManipulator* p_GraspingManipulator) {

me->itsGraspingManipulator = p_GraspingManipulator;
}

int RobotArmManager_getItsRotatingArmJoint(const RobotArmManager* const me) {
int iter = 0;
return iter;

}

void RobotArmManager_addItsRotatingArmJoint(RobotArmManager* const me, struct
RotatingArmJoint * p_RotatingArmJoint) {

int pos;
for(pos = 0; pos < 4; ++pos) {

if (!me->itsRotatingArmJoint[pos]) {
me->itsRotatingArmJoint[pos] = p_RotatingArmJoint;
break;

}
}

}

void RobotArmManager_removeItsRotatingArmJoint(RobotArmManager* const me, struct
RotatingArmJoint * p_RotatingArmJoint) {

int pos;
for(pos = 0; pos < 4; ++pos) {

if (me->itsRotatingArmJoint[pos] == p_RotatingArmJoint) {
me->itsRotatingArmJoint[pos] = NULL;

}
}

}

void RobotArmManager_clearItsRotatingArmJoint(RobotArmManager* const me) {
{

int pos;

for(pos = 0; pos < 4; ++pos)

{

me->itsRotatingArmJoint[pos] = NULL;
}

}
}

int RobotArmManager_getItsSlidingArmJoint(const RobotArmManager* const me) {
int iter = 0;
return iter;

}

void RobotArmManager_addItsSlidingArmJoint(RobotArmManager* const me, struct
SlidingArmJoint * p_SlidingArmJoint) {

110 Chapter 3

int pos;

for(pos = 0; pos < 2; ++pos) {

if (!me->itsSlidingArmJoint[pos]) {
me->itsSlidingArmJoint[pos] = p_SlidingArmJoint;
break;

}

}

}

void RobotArmManager_removeItsSlidingArmJoint(RobotArmManager* const me, struct
SlidingArmJoint * p_SlidingArmJoint) {

int pos;
for(pos = 0; pos < 2; ++pos) {

if (me->itsSlidingArmJoint[pos] == p_SlidingArmJoint) {
me->itsSlidingArmJoint[pos] = NULL;

}
}

}

void RobotArmManager_clearItsSlidingArmJoint(RobotArmManager* const me) {
{

int pos;

for(pos = 0; pos < 2; ++pos)

{

me->itsSlidingArmJoint[pos] = NULL;
}

}
}

RobotArmManager * RobotArmManager_Create(void) {
RobotArmManager* me = (RobotArmManager *)
malloc(sizeof(RobotArmManager));
if(me!=NULL)

{
RobotArmManager_Init(me);

}
return me;

}

void RobotArmManager_Destroy(RobotArmManager* const me) {
if(me!=NULL) {

RobotArmManager_Cleanup(me);

}

free(me);

}

static void cleanUpRelations(RobotArmManager* const me) {
if(me->itsGraspingManipulator != NULL) {

me->itsGraspingManipulator = NULL;
}

}

int RobotArmManager_getItsAction(const RobotArmManager* const me)
{

int iter = 0;

Design Patterns for Accessing Hardware 111

return iter;

}

void RobotArmManager_addItsAction(RobotArmManager* const me, struct Action * p_Action) {
int pos;
for(pos = 0; pos < 100; ++pos) {

if (!me->itsAction[pos]) {

me->itsAction[pos] = p_Action;

break;

}

}

}

void RobotArmManager_removeItsAction(RobotArmManager* const me, struct Action *
p_Action) {

int pos;

for(pos = 0; pos < 100; ++pos) {

if (me->itsAction[pos] == p_Action) {

me->itsAction[pos] = NULL;

}

}

}

void RobotArmManager_clearItsAction(RobotArmManager* const me) {

int pos;

for(pos = 0; pos < 100; ++pos) {

me->itsAction[pos] = NULL;

}

}

Code Listing 3-10: RobotArmManager.c

3.5 Observer Pattern
The Observer Pattern is one of the most common patterns around. When present, it provides a
means for objects to “listen in” on others while requiring no modifications whatsoever to the
data servers. In the embedded domain, this means that sensor data can be easily shared to
elements that may not even exist when the sensor proxies are written.

3.5.1 Abstract

The Observer Pattern (also known as the “Publish-Subscribe Pattern”) provides notification to a
set of interested clients that relevant data have changed. It does this without requiring the data
server to have any a priori knowledge about its clients. Instead, the clients simply offer a
subscription function that allows clients to dynamically add (and remove) themselves to the
notification list. The data server can then enforce whatever notification policy it desires. Most
commonly, data are sent whenever new data arrive, but clients can also be updated periodically,

112 Chapter 3

or with a minimum or maximum frequency. This reduces the computational burden on the
clients to ensure that they have timely data.

3.5.2 Problem

In a naïve situation, each client can request data periodically from a data server in case the data
have changed, but that is wasteful of compute and communication resources as the clients
generally cannot know when new data are available. If the data server pushes the data out, then
it must know who all of its clients are, breaking the basic rule of client-server relations13

requiring changes to the server to add new clients.

The Observer Pattern addresses this concern by adding subscription and unsubscription services
to the data server. Thus a client can dynamically add itself to the notification list without a priori
knowledge of the client on the part of the server. On the server side, the server can enforce the
appropriate update policy to the notification of its interested clients. In addition, the pattern allows
dynamic modification of subscriber lists and so adds a great deal of flexibility to the software.

3.5.3 Pattern Structure

Figure 3-8 shows the basic structure of the pattern. The AbstractSubject is the data server
plus the machinery to maintain a list of interested subscribers. A client adds itself to the
notification list by passing a pointer to an accept(Datum) function and removes itself by
calling unsubscribe with the same pointer. When the AbstractSubject decides to notify its
clients, the notify() function walks through the client list, calling the pointed-to function and
passing the relevant data. The AbstractClient provides the accept(Datum) function to
receive and process the incoming data.

3.5.4 Collaboration Roles

This section describes the roles for this pattern.

3.5.4.1 AbstractClient Interface
The AbstractClient associates with the AbstractSubject so that it can invoke the
latter’s various services. It contains an accept(Datum) function to be called when the
AbstractClient subscribes as well as whenever the AbstractSubject thinks it is
appropriate to send data. The AbstractClient is abstract in the sense that while it specifies
the functions, it does not provide any implementation. It is realized by a set of
ConcreteClients that provide implementation that do things with the received data.

In addition to the accept(Datum) function, the AbstractClient associates with the data. This is
normally realized with a pointer but it can also be a stack, global, or static variable.

13 That is, the clients know about the server but the server doesn’t know who its clients are.

Design Patterns for Accessing Hardware 113

Figure 3-8 Observer Pattern

3.5.4.2 AbstractSubject Interface
The AbstractSubject is the data server in this pattern. Relevant to this pattern it provides
three services. The subscribe(acceptPtr) service adds the pointer to the accept function
to the notification list. Its return value is zero if the add is successful or non-zero if not. The
unsubscribe(acceptPtr) function removes the accept function from the notification list,
again returning zero if successful. Finally, the notify() function walks the notification list to
notify the subscribed clients. This is done by invoking the function pointed to by each
notification handle.

The AbstractSubject also contains a link to the Datum to be passed as well as a list of
NotificationHandles. In the representation here, the NotificationHandle is imple
mented as an array of pointers, but it can also be a linked list or other data structure. Similarly,
the Datum can be on the heap, stack, or static as appropriate.

3.5.4.3 ConcreteClient
The ConcreteClient is a concrete realization of the AbstractClient interface. That is, it
provides an implementation of the acceptPtr(Datum) function as well as other functionality
not relevant to the pattern per se.

3.5.4.4 ConcreteSubject
The ConcreteSubject is a concrete realization of the AbstractSubject interface. It
provides implementation of the functions but also provides means to acquire and manage the

114 Chapter 3

data it distributes. The ConcreteSubject is often a HardwareProxy in addition to an
AbstractSubject.

3.5.4.5 Datum
This element is a stand-in for the data of interest to the clients and subjects. It may be a simple
primitive type such as an int or may be a complex struct.

3.5.4.6 NotificationHandle
The NotificationHandle is a representation of a means to invoke a client’s accept

(Datum) function. By far, the most common implementation is as a function pointer, but other
implementations can be used as well.

3.5.5 Consequences

The Observer Pattern simplifies the process of distributing data to a set of clients who
may not be known at design-time, and dynamically managing lists of interested clients
during run-time. This pattern maintains the fundamental client-server relation while
providing run-time flexibility through its subscription mechanism. Compute efficiency is
maintained because clients are only updated when appropriate; the most common policy is
that the clients are updated when the data change, but any appropriate policy can be
implemented.

3.5.6 Implementation Strategies

The only complex aspects of this pattern are the implementation of the notification handle and
the management of the notification handle list. The notification handle itself is almost always a
function callback, that is, a pointer to a function with the right signature. Of course, this
signature varies with the data being returned, but it also depends on the implementation of the
software “classes” as discussed in Chapter 1. If using the struct approach with the me pointers,
this will be the first parameter of the accept function. If you don’t use the approach but write a
more traditional C, then the realization of the ConcreteClients is more manual but you
won’t have to include the me pointer in the accept function parameter list. In the example later
in this section, we shall use the former approach.

The easiest approach for the notification list is to declare an array big enough to hold all
potential clients. This wastes memory in highly dynamic systems with many potential clients.
An alternative is to construct the system as a linked list; that is, add another variable to each
notification handle which is a pointer to the next one. Obviously, the last element in the list has
a NULL next pointer value.

Design Patterns for Accessing Hardware 115

3.5.7 Related Patterns

This pattern can be freely mixed with the previous patterns in this chapter since its concerns are
orthogonal. In embedded systems it is very common to add Observer functionality to a
Hardware Proxy or Hardware Adapter, for example.

3.5.8 Example

Figure 3-9 provides a straightforward example of this pattern. In this example, the GasSensor

is the ConcreteClient of the pattern; it provides the subscribe() and unsubscribe functions
and manages the array of GasNotificationHandles. Because we implemented the pattern
with the usage of our pseudo-object–oriented approach, all the operations have a first parameter
that identifies the instance data. These “hidden parameters” are not shown in Figure 3-9 but
they do show up in the code. This impacts the GasNotificationHandle in that not only do
we need the function pointer for the acceptor function, we also need its instance data point to
pass as its first argument.

Figure 3-9 Observer Pattern example

116 Chapter 3

In addition to the subscribe() and unsubscribe() operations, the notify() function walks
the list of registered subscribers and invokes the accept() operation using the simple statement

me->itsGasNH[pos]->acceptorPtr(me->itsGasNH[pos]->instancePtr,

me->itsGasData);

In this way, the function being pointed to is accessed via the function pointer, where the first
parameter is the instance data of the client and the second parameter is a pointer to the new data.

The GasSensor class also includes a newData() function that calls the notify() function
and a dumpList() function that prints out a list of the currently subscribed clients. The code
for the GasSensor is shown in Code Listing 3-11 and Code Listing 3-12.

#ifndef GasSensor_H

#define GasSensor_H

#include "GasData.h"
/* the function pointer type

The first value of the function pointer is to the instance

data of the class. The second is a ptr to the new gas data

*/

typedef void (*gasDataAcceptorPtr)(void *, struct GasData*);

struct GasNotificationHandle;

/* class GasSensor */

typedef struct GasSensor GasSensor;

struct GasSensor {

struct GasData* itsGasData;

struct GasNotificationHandle *itsGasNH[100];

};

/* Constructors and destructors:*/

void GasSensor_Init(GasSensor* const me);

void GasSensor_Cleanup(GasSensor* const me);

/* Operations */

void GasSensor_dumpList(GasSensor* const me);

void GasSensor_newData(GasSensor* const me, unsigned int flow, unsigned int n2, unsigned

int o2);

void GasSensor_notify(GasSensor* const me);

void GasSensor_subscribe(GasSensor* const me, void * instancePtr, const gasDataAccep
torPtr* aPtr);

void GasSensor_unsubscribe(GasSensor* const me, const gasDataAcceptorPtr* aPtr);

struct GasData* GasSensor_getItsGasData(const GasSensor* const me);

void GasSensor_setItsGasData(GasSensor* const me, struct GasData* p_GasData);

int GasSensor_getItsGasNH(const GasSensor* const me);

void GasSensor_addItsGasNH(GasSensor* const me, struct GasNotificationHandle *

p_GasNotificationHandle);

void GasSensor_removeItsGasNH(GasSensor* const me, struct GasNotificationHandle *

p_GasNotificationHandle);

void GasSensor_clearItsGasNH(GasSensor* const me);

Design Patterns for Accessing Hardware 117

GasSensor * GasSensor_Create(void);

void GasSensor_Destroy(GasSensor* const me);

#endif

Code Listing 3-11: GasSensor.h

#include "GasSensor.h"

#include "GasData.h"

#include "GasNotificationHandle.h"

static void cleanUpRelations(GasSensor* const me);
void GasSensor_Init(GasSensor* const me) {

me->itsGasData = NULL;

int pos;

for(pos = 0; pos < 100; ++pos) {

me->itsGasNH[pos] = NULL;

}

}

void GasSensor_Cleanup(GasSensor* const me) {

cleanUpRelations(me);

}

void GasSensor_dumpList(GasSensor* const me) {

int pos;

char s[100];

printf(“Dumping registered elements/n”);

for (pos=0; pos<100; pos++)

if (me->itsGasNH[pos])

if (me->itsGasNH[pos]->acceptorPtr) {

printf(“Client %d: InstancePtr=%p, acceptPtr=%p/n”,

pos,me->itsGasNH[pos]->instancePtr, me->itsGasNH[pos]

>acceptorPtr);

};

}

void GasSensor_newData(GasSensor* const me, unsigned int flow, unsigned int n2, unsigned
int o2) {

if (!me->itsGasData)
me->itsGasData = GasData_Create();

me->itsGasData->flowRate = flow;

me->itsGasData->N2Conc = n2;

me->itsGasData->O2Conc = o2;

GasSensor_notify(me);

}

void GasSensor_notify(GasSensor* const me) {

int pos;

char s[100];

for (pos=0; pos<100; pos++)

if (me->itsGasNH[pos])

if (me->itsGasNH[pos]->acceptorPtr)

118 Chapter 3

me->itsGasNH[pos]->acceptorPtr(me->itsGasNH[pos]->instancePtr,
me->itsGasData);
}

void GasSensor_subscribe(GasSensor* const me, void * instancePtr, const gasDataAccep
torPtr* aPtr) {

struct GasNotificationHandle* gnh;
gnh = GasNotificationHandle_Create();
gnh->instancePtr = instancePtr;
gnh->acceptorPtr = aPtr;
GasSensor_addItsGasNH(me, gnh);

}

void GasSensor_unsubscribe(GasSensor* const me, const gasDataAcceptorPtr* aPtr) {
int pos;
for(pos = 0; pos < 100; ++pos) {

if (me->itsGasNH[pos])
if (me->itsGasNH[pos]->acceptorPtr == aPtr) {

GasNotificationHandle_Destroy(me->itsGasNH[pos]);
me->itsGasNH[pos] = NULL;

}
}

}

struct GasData* GasSensor_getItsGasData(const GasSensor* const me) {
return (struct GasData*)me->itsGasData;

}

void GasSensor_setItsGasData(GasSensor* const me, struct GasData* p_GasData) {
me->itsGasData = p_GasData;

}

int GasSensor_getItsGasNH(const GasSensor* const me) {
int iter = 0;
return iter;

}

void GasSensor_addItsGasNH(GasSensor* const me, struct GasNotificationHandle *
p_GasNotificationHandle) {

int pos;
for(pos = 0; pos < 100; ++pos) {

if (!me->itsGasNH[pos]) {

me->itsGasNH[pos] = p_GasNotificationHandle;

break;

}
}

}

void GasSensor_removeItsGasNH(GasSensor* const me, struct GasNotificationHandle *
p_GasNotificationHandle) {

int pos;
for(pos = 0; pos < 100; ++pos) {

if (me->itsGasNH[pos] == p_GasNotificationHandle) {

Design Patterns for Accessing Hardware 119

me->itsGasNH[pos] = NULL;

}

}

}

void GasSensor_clearItsGasNH(GasSensor* const me) {

int pos;

for(pos = 0; pos < 100; ++pos)

{

me->itsGasNH[pos] = NULL;

}

}

GasSensor * GasSensor_Create(void) {

GasSensor* me = (GasSensor *) malloc(sizeof(GasSensor));

if(me!=NULL) {

GasSensor_Init(me);

}

return me;

}

void GasSensor_Destroy(GasSensor* const me) {

if(me!=NULL) {

GasSensor_Cleanup(me);

}

free(me);

}

static void cleanUpRelations(GasSensor* const me) {

if(me->itsGasData != NULL) {

me->itsGasData = NULL;

}

}

Code Listing 3-12: GasSensor.c

Figure 3-9 shows that our example system has three clients – the DisplayClient, the GasMix
erClient, and the SafetyMonitorClient. In addition to the accept() function, the DisplayMoni
torClient class includes a show() function that displays the data when its accept() function is
called, an alarm function (invoked by the SafetyMonitorClient when appropriate), and a
register() function that calls the subscribe function of the GasSensor. The code for the
DisplayClient is given in Code Listing 3-13 and Code Listing 3-14.

#ifndef DisplayClient_H

#define DisplayClient_H

#include "GasSensor.h"

typedef struct DisplayClient DisplayClient;
struct DisplayClient {

struct GasData* itsGasData;

struct GasSensor* itsGasSensor;

};

120 Chapter 3

/* Constructors and destructors:*/

void DisplayClient_Init(DisplayClient* const me);

void DisplayClient_Cleanup(DisplayClient* const me);

/* Operations */

void DisplayClient_accept(DisplayClient* const me, struct GasData* g);

void DisplayClient_alarm(DisplayClient* const me, char* alarmMsg);

void DisplayClient_register(DisplayClient* const me);

void DisplayClient_show(DisplayClient* const me);

struct GasData* DisplayClient_getItsGasData(const DisplayClient* const me);

void DisplayClient_setItsGasData(DisplayClient* const me, struct GasData* p_GasData);

struct GasSensor* DisplayClient_getItsGasSensor(const DisplayClient* const me);

void DisplayClient_setItsGasSensor(DisplayClient* const me, struct GasSensor* p_GasSensor);

DisplayClient * DisplayClient_Create(void);

void DisplayClient_Destroy(DisplayClient* const me);

#endif

Code Listing 3-13: DisplayClient.h

#include “DisplayClient.h”

#include “GasData.h”

#include “GasSensor.h”

static void cleanUpRelations(DisplayClient* const me);

void DisplayClient_Init(DisplayClient* const me) { me->itsGasData = NULL;

me->itsGasSensor = NULL;

}

void DisplayClient_Cleanup(DisplayClient* const me) {

cleanUpRelations(me);

}

void DisplayClient_accept(DisplayClient* const me, struct GasData* g) {

if (!me->itsGasData)

me->itsGasData = GasData_Create();

if (me->itsGasData) {

me->itsGasData->flowRate = g->flowRate;

me->itsGasData->N2Conc = g->N2Conc;

me->itsGasData->O2Conc = g->O2Conc;

DisplayClient_show(me);

};

}

void DisplayClient_alarm(DisplayClient* const me, char* alarmMsg)
{

printf(“ALERT! ”);

printf(alarmMsg);

printf(“/n/n”);

}

void DisplayClient_register(DisplayClient* const me) {

if (me->itsGasSensor)

GasSensor_subscribe(me->itsGasSensor, me,&DisplayClient_accept);

}

Design Patterns for Accessing Hardware 121

void DisplayClient_show(DisplayClient* const me) {
if (me->itsGasData) {

printf("Gas Flow Rate = %5d/n", me->itsGasData->flowRate);
printf("O2 Concentration = %2d/n", me->itsGasData->N2Conc);
printf("N2 Concentration = %2d/n/n", me->itsGasData->N2Conc);

}

else

printf("No data available/n/n");

}

struct GasData* DisplayClient_getItsGasData(const DisplayClient* const me) {

return (struct GasData*)me->itsGasData;

}

void DisplayClient_setItsGasData(DisplayClient* const me, struct GasData* p_GasData) {
me->itsGasData = p_GasData;

}

struct GasSensor* DisplayClient_getItsGasSensor(const DisplayClient* const me) {

return (struct GasSensor*)me->itsGasSensor;

}

void DisplayClient_setItsGasSensor(DisplayClient* const me, struct GasSensor* p_GasSen
sor) {

me->itsGasSensor = p_GasSensor;
}

DisplayClient * DisplayClient_Create(void) {

DisplayClient* me = (DisplayClient *)

malloc(sizeof(DisplayClient));

if(me!=NULL) {

DisplayClient_Init(me);

}

return me;

}

void DisplayClient_Destroy(DisplayClient* const me) {

if(me!=NULL) {

DisplayClient_Cleanup(me);

}

free(me);

}

static void cleanUpRelations(DisplayClient* const me) {

if(me->itsGasData != NULL) {

me->itsGasData = NULL;

}

if(me->itsGasSensor != NULL) {

me->itsGasSensor = NULL;

}

}

Code Listing 3-14: DisplayClient.c

122 Chapter 3

Lastly, let’s look at the code for the GasData class. This is a very straightforward data class with
just a few helper functions, as seen in Code Listing 3-15 and Code Listing 3-16.

ifndef GasData_H

#define GasData_H

typedef struct GasData GasData;
struct GasData {

unsigned short N2Conc;

unsigned short O2Conc;

unsigned int flowRate;

};

/* Constructors and destructors:*/

oid GasData_Init(GasData* const me);

void GasData_Cleanup(GasData* const me);

GasData * GasData_Create(void);

void GasData_Destroy(GasData* const me);

#endif

Code Listing 3-15: GasData.h

#include "GasData.h"

void GasData_Init(GasData* const me) {

}

void GasData_Cleanup(GasData* const me) {

}

GasData * GasData_Create(void) {

GasData* me = (GasData *) malloc(sizeof(GasData));

if(me!=NULL) {

GasData_Init(me);

}

return me;

}

void GasData_Destroy(GasData* const me) {

if(me!=NULL) {

GasData_Cleanup(me);

}

free(me);

}

Code Listing 3-16: GasData.c

3.6 Debouncing Pattern
This simple pattern is used to reject multiple false events arising from intermittent contact of
metal surfaces.

Design Patterns for Accessing Hardware 123

3.6.1 Abstract

Push buttons, toggle switches, and electromechanical relays are input devices for digital
systems that share a common problem – as metal connections make contact, the metal deforms
or “bounces”, producing intermittent connections during switch open or closure. Since this
happens very slowly (order of milliseconds) compared to the response speed of embedded
systems (order of microseconds or faster), this results in multiple electronic signals to the
control system. This pattern addresses this concern by reducing the multiple signals into a
single one by waiting a period of time after the initial signal and then checking the state.

3.6.2 Problem

Many input devices for embedded systems use metal-on-metal contact to indicate events of
interest, such as button presses, switch movement, and activating or deactivating relays. As the
metal moves into contact, physical deformation occurs resulting in an intermittent bouncing
contact until the vibrations dampen down. This results in an intermediate contact profile such as
that shown in Figure 3-10.

3.6.3 Pattern Structure

The basic solution is to accept the initial event, wait for the vibrations to dampen out, and then
sample the data source for its state. See Figure 3-11 for the pattern structure.

3.6.4 Collaboration Roles

This section describes the roles for this pattern.

Button Sample
Point

Contact

No Contact

Button Pushed Button Released Button Sample
Point

Figure 3-10 Bouncing electrical contacts

124 Chapter 3

Figure 3-11 Debouncing Pattern

3.6.4.1 ApplicationClient
This element is the ultimate recipient of the debounced event. Its operation deviceEventReceive

() is only activated when the event is real (i.e., results in a changed device state).

3.6.4.2 BouncingDevice
The BouncingDevice represents the hardware for the device itself. The most common
implementation of this device is completely in hardware; in the case, the sendEvent()

operation is simply an activation of an interrupt in the interrupt vector table of the embedded
processor and the getState operation is implemented via a read of a memory location or IO port.
DeviceState is normally a bivalued attribute, ON or OFF.

3.6.4.3 Debouncer
The Debouncer is the software element that processes the incoming event, debounces it, and
makes sure that it represents an actual device state change. Its eventReceive() function is
activated by the sendEvent() service of the BouncingDevice. In turn, it sets the delay timer
(disabling interrupts from the device if necessary) and then checks the device state. If, after the

Design Patterns for Accessing Hardware 125

debouncing time, the state is different then the event must have been real, so it sends the
appropriate message to the ApplicationClient. The old state of the button is stored in its variable
oldState; this variable is updated whenever there is a detected change of state of the device.

3.6.4.4 DebouncingTimer
This timer provides a nonbusy wait via its delay() service. This is often done with an OS call
but might be done with specialty timer hardware as well.

3.6.5 Consequences

This pattern is not necessary for hardware that debounces before announcing events. In my
experience, however, it often falls on the software to perform this task. This is a simple pattern
that performs the debouncing so that the application need only concern itself with true events
resulting from a change in device state.

3.6.6 Implementation Strategies

It is common for the device to use an interrupt vector to contact its client. Indeed, it is common
for the BouncingDevice to be entirely implemented in hardware so that when the event occurs, a
hardware interrupt is created, and the device state must be verified by reading a memory location
or port address. When the event interface is via an interrupt, the address of the DeviceClient::
eventReceive() operation must be installed in the proper location in the interrupt vector table
when the DeviceClient is initiated, and the address must be removed if the DeviceClient is
deactivated. Care must be taken to ensure that the eventReceive operation has no parameters (not
even hidden ones!) so that the Return from Interrupt instruction will work properly. If the hidden
me parameter is used as in the other patterns here, then making the operation static will ensure
there is no hidden parameter because static operations are class-wide and not instance-wide
functions (that is, they use no instance data and so don’t require a me pointer).

If the interrupt vector table is not used, this pattern can be mixed with the Observer Pattern to
distribute the event signal to multiple clients, if desired.

The DebouncingTimer may use special timer hardware such as a programmable 555 timer. If
the RTOS (Real-Time Operating System) timer is used, care must be taken with the time unit
resolution. Windows, for example, has a standard timer resolution of between 10 and 25
milliseconds. You can only get a delay time as a multiple of the basic timer resolution so if you
want a 45 ms delay, you will have to use the closest timer resolution that is greater than or equal
to your desired time. For debouncing applications, this is usually fine but your needs may vary
with your specific hardware and application.

If you don’t mind fully occupying your embedded processor while you wait for the debounce
timeout, it is a simple matter, as shown in Code Listing 3-17.

126 Chapter 3

/* LOOPS_PER_MS is the # of loops in the delay() function

required to hit 1 ms, so it is processor and

compiler-dependent

*/

#define LOOPS_PER_MS 1000

void delay(unsigned int ms) {

long nLoops = ms * LOOPS_PER_MS;

do {

while (nLoops–);

}

Code Listing 3-17: Busy wait timing

3.6.7 Related Patterns

As mentioned, the pattern is often used in conjunction with the Interrupt Pattern discussed
elsewhere in this chapter. Timeouts are often shown within a tm() event on the state machine.

3.6.8 Example

In the example shown in Figure 3-12, we are modeling a toggle button for a microwave
oven; press it once to turn on the microwave emitter and press it again to turn it off. This
means that we need to call different operations in the MicrowaveEmitter depending if this
is an even-numbered press of the button or an odd-numbered press. In addition, we have
to debounce both the press and release of the button, although we only act on a button
release.

The code for the button driver is given in Code Listing 18 and Code Listing 19. #ifndef
ButtonDriver_H
#define ButtonDriver_H

#define LOOPS_PER_MS (1000)

#define DEBOUNCE_TIME (40)

struct Button;

struct MicrowaveEmitter;

struct Timer;

typedef struct ButtonDriver ButtonDriver;
struct ButtonDriver {

unsigned char oldState;

unsigned char toggleOn;

struct Button* itsButton;

struct MicrowaveEmitter* itsMicrowaveEmitter;

struct Timer* itsTimer;

};

Design Patterns for Accessing Hardware 127

Figure 3-12 Debounce example

void ButtonDriver_Init(ButtonDriver* const me);

void ButtonDriver_Cleanup(ButtonDriver* const me);

/* Operations */ void ButtonDriver_eventReceive(ButtonDriver* const me);

struct Button* ButtonDriver_getItsButton(const ButtonDriver* const me);

void ButtonDriver_setItsButton(ButtonDriver* const me, struct Button* p_Button);

struct MicrowaveEmitter*

ButtonDriver_getItsMicrowaveEmitter(const ButtonDriver* const me);

void ButtonDriver_setItsMicrowaveEmitter(ButtonDriver* const me, struct MicrowaveEmitter*

p_MicrowaveEmitter);

struct Timer* ButtonDriver_getItsTimer(const ButtonDriver* const me);

void ButtonDriver_setItsTimer(ButtonDriver* const me, struct Timer* p_Timer);

ButtonDriver * ButtonDriver_Create(void);

void ButtonDriver_Destroy(ButtonDriver* const me);

void ButtonDriver___setItsButton(ButtonDriver* const me, struct Button* p_Button);

void ButtonDriver__setItsButton(ButtonDriver* const me, struct Button* p_Button);

void ButtonDriver__clearItsButton(ButtonDriver* const me);

#endif

Code Listing 3-18: ButtonDriver.h

128 Chapter 3

#include "ButtonDriver.h"

#include "Button.h"

#include "MicrowaveEmitter.h"

#include "Timer.h"

static void cleanUpRelations(ButtonDriver* const me);

void ButtonDriver_Init(ButtonDriver* const me) {

me->oldState = 0;
me->toggleOn = 0;
me->itsButton = NULL;
me->itsMicrowaveEmitter = NULL;
me->itsTimer = NULL;

}

void ButtonDriver_Cleanup(ButtonDriver* const me) {
cleanUpRelations(me);

}

void ButtonDriver_eventReceive(ButtonDriver* const me) {
Timer_delay(me->itsTimer, DEBOUNCE_TIME);
if (Button_getState(me->itsButton) != me->oldState) {

/* must be a valid button event */

me->oldState = me->itsButton->deviceState;

if (!me->oldState) {

/* must be a button release, so update toggle value */
if (me->toggleOn) {

me->toggleOn = 0; /* toggle it off */
Button_backlight(me->itsButton, 0);
MicrowaveEmitter_stopEmitting(me->itsMicrowaveEmitter);
}

else {
me->toggleOn = 1; /* toggle it on */
Button_backlight(me->itsButton, 1);
MicrowaveEmitter_startEmitting(me->itsMicrowaveEmitter);
}

}

/* if it’s not a button release, then it must
be a button push, which we ignore.

*/
}

}

struct Button* ButtonDriver_getItsButton(const ButtonDriver* const me) {
return (struct Button*)me->itsButton;

}

void ButtonDriver_setItsButton(ButtonDriver* const me, struct Button* p_Button) {
if(p_Button != NULL)

{
Button__setItsButtonDriver(p_Button, me);

}

Design Patterns for Accessing Hardware 129

ButtonDriver__setItsButton(me, p_Button);
}

struct MicrowaveEmitter*

ButtonDriver_getItsMicrowaveEmitter(const ButtonDriver* const me)

{

return (struct MicrowaveEmitter*)me->itsMicrowaveEmitter;
}

void ButtonDriver_setItsMicrowaveEmitter(ButtonDriver* const me, struct MicrowaveEmit
ter* p_MicrowaveEmitter) {

me->itsMicrowaveEmitter = p_MicrowaveEmitter;
}

struct Timer* ButtonDriver_getItsTimer(const ButtonDriver* const me) {
return (struct Timer*)me->itsTimer;

}

void ButtonDriver_setItsTimer(ButtonDriver* const me, struct Timer* p_Timer) {
me->itsTimer = p_Timer;

}

ButtonDriver * ButtonDriver_Create(void) {
ButtonDriver* me = (ButtonDriver *)
malloc(sizeof(ButtonDriver));
if(me!=NULL)

{
ButtonDriver_Init(me);

}
return me;

}

void ButtonDriver_Destroy(ButtonDriver* const me) {
if(me!=NULL)

{
ButtonDriver_Cleanup(me);

}
free(me);

}

static void cleanUpRelations(ButtonDriver* const me) {
if(me->itsButton != NULL)

{
struct ButtonDriver* p_ButtonDriver = Button_getItsButtonDriver(me

>itsButton);
if(p_ButtonDriver != NULL)

{
Button___setItsButtonDriver(me->itsButton, NULL);

}
me->itsButton = NULL;

}
if(me->itsMicrowaveEmitter != NULL)

{
me->itsMicrowaveEmitter = NULL;

}

130 Chapter 3

if(me->itsTimer != NULL)
{

me->itsTimer = NULL;
}

}

void ButtonDriver___setItsButton(ButtonDriver* const me, struct Button* p_Button) {
me->itsButton = p_Button;

}

void ButtonDriver__setItsButton(ButtonDriver* const me, struct Button* p_Button) {
if(me->itsButton != NULL)

{
Button___setItsButtonDriver(me->itsButton, NULL);

}
ButtonDriver___setItsButton(me, p_Button);

}
void ButtonDriver__clearItsButton(ButtonDriver* const me) {

me->itsButton = NULL;
}

Code Listing 3-19: ButtonDriver.c

3.7 Interrupt Pattern
The physical world is fundamentally both concurrent and asynchronous; it's nonlinear too, but
that's a different story. Things happen when they happen and if your embedded system isn’t
paying attention, those occurrences may be lost. Interrupt handlers (a.k.a. Interrupt Service
Routines, or ISRs) are a useful way to be notified when an event of interest occurs even if your
embedded system is off doing other processing.

3.7.1 Abstract

The Interrupt Pattern is a way of structuring the system to respond appropriately to incoming
events. It does require some processor- and compiler-specific services but most embedded
compilers, and even some operating systems provide services for just this purpose. Once
initialized, an interrupt will pause its normal processing, handle the incoming event, and then
return the system to its original computations.

3.7.2 Problem

In many systems, events have different levels of urgency14. Most embedded systems have at
least some events with a high urgency that must be handled even when the system is busy doing

14	 Urgency is a measure of the rapidity with which an event must be handled, usually expressed as the nearness of a
deadline. This topic will be discussed in more detail in Chapter 4.

Design Patterns for Accessing Hardware 131

other processing. The Polling Pattern, discussed elsewhere in this chapter, looks for events of
interest when it is convenient for the system. While this has the advantage that primary
processing can proceed uninterrupted, it has the disadvantage that high urgency and high
frequency events may not be handled in a timely fashion, or may be missed altogether. The
Interrupt Pattern addresses this problem by immediately pausing the current processing,
handling the incoming event, and then returning to the original computation.

3.7.3 Pattern Structure

Figure 3-13 shows the basic structure of the pattern. Because it is important to ensure that the
interrupt handlers are parameterless, I’ve used the «File» stereotype to indicate that this pattern
isn’t using the class-structured approach with the me pointer.

3.7.4 Collaboration Roles

This section describes the roles for this pattern.

3.7.4.1 InterruptHandler
The interruptHandler is the only element that has behavior in the pattern. It has functions to
install or deinstall an interrupt vector and the interrupt service routines themselves.

The install() function takes the interrupt number as an incoming parameter. When run, it copies
the existing vector into the vector table and then replaces it with the address of the appropriate
interrupt service routine. The deinstall() function does the reverse, restoring the original vector.

Figure 3-13 Interrupt Pattern

132 Chapter 3

Each handleIinterrupt_x() function handles a specific interrupt, completing with a Return From
Interrupt (RTI) statement. This statement is compiler and processor dependent. As mentioned, it
is crucial that the interrupt service routines have no parameters because otherwise when they
attempt to return, the wrong value will be popped off the CPU stack.

3.7.4.2 InterruptVectorTable
The InterruptVectorTable is nothing more than an array of addresses to interrupt service
routines. It is located in a specific memory location that is processor dependent. When interrupt
number x occurs, the CPU suspends the current processing and indirectly invokes the address
corresponding to the x-th index in this table. Upon an RTI, the CPU restores execution of the
suspending computation.

3.7.4.3 vectorPtr
The vectorPtr is a data type; specifically it is a pointer to a function that takes no parameters and
returns no values.

3.7.5 Consequences

This pattern allows for highly responsive processing of events of interest. It interrupts normal
processing (provided that interrupts have not been disabled) and so should be used carefully
when time-critical processing is going on. Normally, interrupts are disabled while an interrupt
service routine is executing; this means that interrupt service routines must execute very
quickly to ensure that other interrupts are not missed.

Because the interrupt service routines must be short, one must take care when using them to
invoke other system services. To share data signaled by an interrupt, for example, the ISR
might need to queue the data and quickly RTI; at some point in the future, the application
software will discover the data in the queue. This mechanism is useful when the actual
acquisition of the data is more urgent than its processing. In this way, a long interrupt handle
can be broken up into two parts; the urgent part, done via the ISR per se, and the processing
part done via a second function that periodically checks for waiting data or signals.

Problems arise with this pattern when the ISR processing takes too long, when an implemen
tation mistake leaves interrupts disabled, or race conditions or deadlocks occur on shared
resources. The last of these concerns is the most insidious.

A race condition is a computational situation in which the result depends on the order of
execution of statements but that order isn’t known or knowable. A deadlock is a situation in
which two elements are waiting on a condition that cannot in principle occur. These are
common problems that will be discussed in more detail in the next chapter. In this context, a
variable or data structure (such as a queue) shared between an interrupt service routine and an
application service is a resource with potential race and deadlock conditions because you can
never know exactly when the ISR will be executed.

Design Patterns for Accessing Hardware 133

Figure 3-14 ISR potential race condition

Figure 3-14 shows a typical structure when the data acquired as a part of an ISR must be shared
with normal system processing. The race condition arises when the interrupt occurs when
ApplicationElement is accessing the SharedResource. Imagining that the ApplicationElement is
halfway through reading the data when the interrupt occurs – unless the read takes place as an
atomic uninterruptible access – the ISR will pause the ApplicationElement mid-read, modify
the data, and then return. The ApplicationElement will see corrupted data – partially new data
and partially old data.

There are a number of solutions to this, but they all involve serializing the access to the shared
resource. One way is to disable interrupts in the ApplicationElement just prior to reading the
data and to reenable interrupt just after access is complete. The primary downside to that
approach is the discipline necessary to ensure that this is always done. Another approach is to
use a mutex semaphore to guard the data, as shown in Figure 3-15.

In this figure, the SharedResource is protected with a mutex semaphore; this results in a lock
when either the getData() or setData() functions are called and in the removal of the lock when
the functions are complete. Deadlock can occur if the ISR waits on the semaphore lock when it
tries to access the data. Since the ISR has interrupted the ApplicationElement that owns the

Figure 3-15 ISR potential deadlock condition

134 Chapter 3

lock, if the ISR waits, the ApplicationElement will never have the opportunity to remove the
lock. The solution of course, is that the ISR cannot wait on the lock. The new data can be
discarded or two shared resources can be made with the proviso that the ISR or Applicatio
nElement can only lock one of the resources at a time. This latter solution is sometimes referred
to as a “ping pong buffer.”

3.7.6 Implementation Strategies

An ISR is different than a normal C function in that as long as interrupts are enabled, it can
pretty much interrupt between any pair of CPU instructions. That means that the CPU registers
must be saved and restored before the ISR statements can execute.

In fact, each interrupt service routine must:

•	 save the CPU registers, including the CPU instruction pointer and any processor flags, such
as carry, parity and zero

•	 clear the interrupt bit
•	 perform the appropriate processing
•	 restore the CPU registers
•	 return

In “standard C,” it is necessary to use assembly language keyword asm to save and restore
registers, something like15:

void isr (void) {
asm {

DI ; disable interrupts
PUSH AF ; save registers
PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH IY
}

/* normal C code here */
asm {

POP IY
POP IX
POP HL
POP DE
POP BC
POP AF
EI ; enable interrupts

15 This is Z80 assembly language (my personal favorite). Your processor mileage may vary.

Design Patterns for Accessing Hardware 135

RETI ; return from interrupt
}

}

Some compilers support this by using a special interrupt keyword. When available, the
keyword is used in the function declaration such as

interrupt void isr(void) {
/* normal C code here */

};

and the compiler will insert the necessary instructions for you.

The GNU C Compiler (GCC) uses __attribute__ specification to indicate an interrupt
handler using the syntax

void isr(void) __attribute__ ((interrupt (“IRQ”));
void isr(void) {

/* normal C code here */
}

but again this is processor dependent.

The interrupt keyword tells the compiler to generate register-saving instructions before the
body of the function is executed and to restore the registers just before the ISRs return.

Many RTOSs provide functions for installing the vectors and some CPUs only have a
single vector, requiring the ISR to figure out which interrupt occurred by checking the
hardware.

3.7.7 Related Patterns

An alternative means to get hardware signals and data is to periodically check for them via the
Polling Pattern.

3.7.8 Example

In the example shown in Figure 3-16, a button is the hardware device. One interrupt (index 0) is
generated for the push and another (index 1) is generated for the release. The ButtonHandler is
the interrupt handler for the interrupts and its install() functions set up the vectors for both
pointers. The main() routine does the following:

•	 initializes the Button and LED classes
•	 sets all the elements of the RobotInterruptVectorTable and ButtonHandler::oldVectors to

NULL
•	 sets the pointer from the ButtonHandler to the LED
•	 calls the install() function to set up the vectors to the two ISRs

136 Chapter 3

Figure 3-16 Interrupt Example

as you can see in Code Listing 20

int j;

Button itsButton;

LED itsLED;

itsButton = Button_Create();

itsLED = LED_Create();

for (j=0;j<9;j++) {

ISRAddress[j] = NULL;

oldVectors[j] = NULL;

};

ButtonHandler_setItsLED(&itsLED);

install(); /* install interrupt vectors */

/* normal system execution stuff */

Code Listing 20: Interupt example main() code

The interesting part is the ButtonHandler itself. It installs the address of the two ISRs into
positions 0 and 1 of the interrupt vector table so that when the interrupts occur, the appropriate

Design Patterns for Accessing Hardware 137

ISR is invoked. In the example, when the button is pushed, the ISR lights the LED and turns off
the light when the button is released.

Note that this code uses the interrupt keyword to indicate to the compiler the interrupt service
routines; you will have to use the appropriate syntax provided by your compiler. To execute this
on standard desktop hardware, simply remove the interrupt keyword from the ISR's function
headers and then the interrupt vector table will operate as a table of normal function pointers.

#ifndef ButtonHandler_H

#define ButtonHandler_H

typedef void (*ButtonVectorPtr)(void);

struct LED;

extern ButtonVectorPtr oldVectors[10];

/* Operations */

void install(void);

void deinstall(void);

interrupt void handleButtonPushInterrupt(void);

interrupt void handleButtonReleaseInterrupt(void);

struct LED* ButtonHandler_getItsLED(void); void ButtonHandler_setItsLED(struct

LED* p_LED);

#endif

Code Listing 21: ButtonHandler.h

#include "ButtonHandler.h"

#include "LED.h"

#include "RobotInterruptVectorTable.h"

ButtonVectorPtr oldVectors[10];

static struct LED* itsLED;

void deinstall(void) {

ISRAddress[0] = oldVectors[0];

ISRAddress[1] = oldVectors[1];

}

interrupt void handleButtonPushInterrupt(void) {

LED_LightOn(itsLED);

}

interrupt void handleButtonReleaseInterrupt(void) {

LED_LightOff(itsLED);

}

void install(void) {

oldVectors[0] = ISRAddress[0];

oldVectors[1] = ISRAddress[1];

ISRAddress[0] = handleButtonPushInterrupt;

ISRAddress[1] = handleButtonReleaseInterrupt;

}

138 Chapter 3

struct LED* ButtonHandler_getItsLED(void) {
return (struct LED*)itsLED;

}

void ButtonHandler_setItsLED(struct LED* p_LED) {
itsLED = p_LED;

}

Code Listing 22: ButtonHandler.c

3.8 Polling Pattern
Another common pattern for getting sensor data or signals from hardware is to check periodi
cally, a process known as polling. Polling is useful when the data or signals are not so urgent
that they cannot wait until the next polling period to be received or when the hardware isn’t
capable of generating interrupts when data or signals become available.

3.8.1 Abstract

The Polling Pattern is the simplest way to check for new data or signals from the hardware.
Polling can be periodic or opportunistic; periodic polling uses a timer to indicate when the
hardware should be sampled whereas opportunistic polling is done when it is convenient for the
system, such as between major system functions or at some point in a repeated execution cycle.
Opportunistic polling is, by definition, less regular but has less impact on the timeliness of other
activities in which the system may be engaged.

3.8.2 Problem

The Polling Pattern addresses the concern of getting new sensor data or hardware signals into
the system as it runs when the data or events are not highly urgent and the time between data
sampling can be guaranteed to be fast enough.

3.8.3 Pattern Structure

This pattern comes in two flavors. Figure 3-17 shows the pattern structure for opportunistic
polling while Figure 3-18 shows the pattern for periodic polling. The difference is that in the
former pattern the applicationFunction will embed calls to poll() when convenient, and in the
latter, a timer is created to start polling.

3.8.4 Collaboration Roles

This section describes the roles for both variants of this pattern.

Design Patterns for Accessing Hardware 139

Figure 3-17 Opportunistic Polling Pattern

3.8.4.1 ApplicationProcessingElement
This elements has the applicationFunction that has a loop in which it invokes the poll()
operation, such as

while (processing) {
action1();
action2();
action3();
OpportunityPoller_poll(me->itsOpportunisticPoller);

}

3.8.4.2 Device

The device provides data and/or device state information via accessible functions. This element
can be a device driver or can simply read from memory- or port-mapped devices. This class
provides two functions, one to retrieve data (typed as deviceData in the example) and one to
retrieve device state (typed as an unsigned int in the example).

140 Chapter 3

Figure 3-18 Periodic Polling Pattern

In the example, there are MAX_POLL_DEVICES connected to the polling element so that the
poll() function scans them all and notifies their respective clients.

3.8.4.3 OpportunisticPoller
This element has the poll() function that scans the attached devices for data and device state
and passes this information on to the appropriate client for each. The difference between the
OpportunisticPoller and the PeriodicPoller is that the latter has timer initialization and shut
down functionality in addition to polling for the data.

3.8.4.4 PeriodicPoller
Like the OpportunisticPoller, the PeriodicPoller has the poll() function that scans the
attached devices for data and device state and passes this information on to the appropriate client for
each. In addition, it has a variable for the poll time (settable in its setPollTime(t) function) and
services to start and stop polling. The installInterruptTimer() function inserts the address of

Design Patterns for Accessing Hardware 141

the ISR into the interrupt vector table while the removeInterruptHandler() restores the
original vector. The startPolling() function initializes the timer. The stopPolling() func
tion stops the timer but leaves the vector in the interrupt vector table.

3.8.4.5 PollDataClient
This element is the client for data and state information from one or more of the devices. In
some cases, there may be a single client for the data from all devices, but in general each device
will have its own client.

3.8.4.6 PollTimer
The PollTimer element represents a timer and the services associated with using it. The
startTimer() method installs the handleTimerInterrupt() interrupt service routine in the
interrupt vector table and creates and initializes a timer with the pollTime attribute. Once the
timer is started, it will set the hardware timer so that its ISR handleTimerInterrupt() will
be invoked, which first resets the timer count and then calls the poll() function.

3.8.5 Consequences

Polling is simpler than the setup and use of the Interrupt Service Routines, although periodic
polling is usually implemented with an ISR tied to a poll timer.

Polling can check many different devices at the same time for status changes but is usually less
timely than interrupts. For this reason, care must be taken that if there are deadlines associated
with the data or signals that the poll time plus the response time is always less than the
deadlines involved. If data arrive faster than the poll time, then data will be lost. This is not a
problem in many applications but is fatal (sometimes literally so) in others.

3.8.6 Implementation Strategies

The simplest implementation is to insert the hardware check in the middle of a main processing
loop that executes as long as the system operates. This is called “symmetric opportunistic
polling” because it operates the same way all the time, even though the length of time the
processing loops take may vary widely. Asymmetric opportunistic polling refers to the practice
of placing checks for new data at convenient but unrelated points throughout the processing.
This approach allows for better tuning (if you need to be more responsive, add some more
checks) but has a larger impact on the primary flow and is harder to maintain.

Periodic polling is polling that takes place with a regular time interval (known as the period)
with a bounded variation (known as the jitter). To achieve this regularity, the checks for new
data are initiated by a timer tied to an interrupt. Thus the periodic variant of the Polling Pattern
is simply a special case of the Interrupt Pattern.

142 Chapter 3

3.8.7 Related Patterns

Periodic polling is a special case of the Interrupt Pattern. In addition, the hardware checks may
be done by invoking data acquisition services of Hardware Proxies or Hardware Adapters. In
addition, the Observer Pattern can be merged in as well, with the polling element (Opportu
nisticPoller or PeriodicPoller) serving as the data server and the PollDataClients serving as the
data clients.

3.8.8 Example

For the example shown in Figure 3-19, I decided to use the Periodic Polling Pattern to check for
three breathing circuit sensors. The first of these sensors monitors the oxygen concentration in the
breathing circuit, the second monitors the gas pressure (and holds the gas flow state), and the third
monitors the pressure in the circuit. When the BEPeriodicPoller is created, its initializer
(BCPeriodicPoller_Init()) calls the BCTimer::installInterruptHandler() service;

Figure 3-19 Polling example

Design Patterns for Accessing Hardware 143

similarly, the clean-up operation done when the BCPeriodicPoller is destroyed calls
BCTimer_stopTiming() and then BCTimer_removeInterruptHandler().

At some point, the BCPeriodicPoller is commanded to start polling via a call to
BCPeriodicPoller_startPolling(). This function calls BC_Timer_startTimer

(timeout) service, passing the desired poll period. From then on, until commanded
otherwise, the timer will fire periodically and invoke the timer interrupt handler
BCTimer_handleTimeInterrupt(), which resets the timer and calls
BCPeriodicPoller_poll(). The poll() function then polls the data and state information
from the three devices and sends them to the MedicalDisplay.

#ifndef BCPeriodicPoller_H
#define BCPeriodicPoller_H

typedef int deviceData;

typedef void (*timerVectorPtr)(void);

#define MAX_POLL_DEVICES (10)

#define DEFAULT_POLL_TIME (1000)

struct BCTimer;

struct BreathingCircuitSensor;

struct MedicalDisplay;

typedef struct BCPeriodicPoller BCPeriodicPoller;
struct BCPeriodicPoller {

unsigned long pollTime;

struct BCTimer* itsBCTimer;

struct BreathingCircuitSensor *itsBreathingCircuitSensor[3];

struct MedicalDisplay* itsMedicalDisplay;

};

void BCPeriodicPoller_Init(BCPeriodicPoller* const me);

void BCPeriodicPoller_Cleanup(BCPeriodicPoller* const me);

/* Operations */ void BCPeriodicPoller_poll(BCPeriodicPoller* const me);

void BCPeriodicPoller_setPollTime(BCPeriodicPoller* const me, unsigned long t);

void BCPeriodicPoller_startPolling(BCPeriodicPoller* const me);

void BCPeriodicPoller_stopPolling(BCPeriodicPoller* const me);

struct BCTimer* BCPeriodicPoller_getItsBCTimer(const BCPeriodicPoller* const me);

void BCPeriodicPoller_setItsBCTimer(BCPeriodicPoller* const me, struct BCTimer*

p_BCTimer);

int BCPeriodicPoller_getItsBreathingCircuitSensor(const BCPeriodicPoller* const me);

void BCPeriodicPoller_addItsBreathingCircuitSensor(BCPeriodicPoller* const me, struct

BreathingCircuitSensor * p_BreathingCircuitSensor);

void BCPeriodicPoller_removeItsBreathingCircuitSensor(BCPeriodicPoller* const me,

struct BreathingCircuitSensor * p_BreathingCircuitSensor);

void BCPeriodicPoller_clearItsBreathingCircuitSensor(BCPeriodicPoller* const me);

struct MedicalDisplay* BCPeriodicPoller_getItsMedicalDisplay(const BCPeriodicPoller*

const me);

void BCPeriodicPoller_setItsMedicalDisplay(BCPeriodicPoller* const me, struct Medical-

Display* p_MedicalDisplay);

BCPeriodicPoller * BCPeriodicPoller_Create(void);

144 Chapter 3

void BCPeriodicPoller_Destroy(BCPeriodicPoller* const me);

void BCPeriodicPoller___setItsBCTimer(BCPeriodicPoller* const me, struct BCTimer*

p_BCTimer);

void BCPeriodicPoller__setItsBCTimer(BCPeriodicPoller* const me, struct BCTimer*

p_BCTimer);

void BCPeriodicPoller__clearItsBCTimer(BCPeriodicPoller* const me);

#endif

Code Listing 3-23: BCPeriodicPoller.h

#include "BCPeriodicPoller.h"

#include "BCTimer.h"

#include "BreathingCircuitSensor.h"

#include "MedicalDisplay.h"

static void cleanUpRelations(BCPeriodicPoller* const me);

void BCPeriodicPoller_Init(BCPeriodicPoller* const me) { me->pollTime = DEFAULT_

POLL_TIME; me->itsBCTimer = NULL;

int pos;
for(pos = 0; pos < 3; ++pos) {

me->itsBreathingCircuitSensor[pos] = NULL;
me->itsMedicalDisplay = NULL;

BCTimer_installInterruptHandler(me->itsBCTimer);

me->pollTime = DEFAULT_POLL_TIME;

}

void BCPeriodicPoller_Cleanup(BCPeriodicPoller* const me) {

BCTimer_stopTimer(me->itsBCTimer);

BCTimer_removeInterruptHandler(me->itsBCTimer);

cleanUpRelations(me);

}

void BCPeriodicPoller_poll(BCPeriodicPoller* const me) {
int state, data;
data = BreathingCircuitSensor_getData(me->itsBreathingCircuitSensor[0]);
MedicalDisplay_showO2Concentration(me->itsMedicalDisplay, data);
data = BreathingCircuitSensor_getData(me->itsBreathingCircuitSensor[1]);
state = BreathingCircuitSensor_getState(me->itsBreathingCircuitSensor[1]);
MedicalDisplay_showGasFlow(me->itsMedicalDisplay, data);
MedicalDisplay_showGasFlowStatus(me->itsMedicalDisplay, state);
data = BreathingCircuitSensor_getData(me->itsBreathingCircuitSensor[2]);
MedicalDisplay_showCircuitPressure(me->itsMedicalDisplay, data);

}

void BCPeriodicPoller_setPollTime(BCPeriodicPoller* const me, unsigned long t) {

me->pollTime = t;

}

void BCPeriodicPoller_startPolling(BCPeriodicPoller* const me) {

BCTimer_startTimer(me->itsBCTimer, me->pollTime);

}

Design Patterns for Accessing Hardware 145

void BCPeriodicPoller_stopPolling(BCPeriodicPoller* const me) {
BCTimer_stopTimer(me->itsBCTimer);

}
struct BCTimer* BCPeriodicPoller_getItsBCTimer(const BCPeriodicPoller* const me) {

return (struct BCTimer*)me->itsBCTimer;
}

void BCPeriodicPoller_setItsBCTimer(BCPeriodicPoller* const me, struct BCTimer* p_
BCTimer) {

if(p_BCTimer != NULL)
{

BCTimer__setItsBCPeriodicPoller(p_BCTimer, me);
}

BCPeriodicPoller__setItsBCTimer(me, p_BCTimer);
}

int BCPeriodicPoller_getItsBreathingCircuitSensor(const BCPeriodicPoller* const me) {
int iter = 0;
return iter;

}

void BCPeriodicPoller_addItsBreathingCircuitSensor(BCPeriodicPoller* const me, struct
BreathingCircuitSensor * p_BreathingCircuitSensor) {

int pos;
for(pos = 0; pos < 3; ++pos) {

if (!me->itsBreathingCircuitSensor[pos]) {
me->itsBreathingCircuitSensor[pos] = p_BreathingCircuitSensor;
break;

}
}

}

void BCPeriodicPoller_removeItsBreathingCircuitSensor(BCPeriodicPoller* const me,
struct BreathingCircuitSensor * p_BreathingCircuitSensor) {

int pos;
for(pos = 0; pos < 3; ++pos) {

if (me->itsBreathingCircuitSensor[pos] == p_BreathingCircuitSensor) {
me->itsBreathingCircuitSensor[pos] = NULL;

}
}

}

void BCPeriodicPoller_clearItsBreathingCircuitSensor(BCPeriodicPoller* const me) {
{

int pos;

for(pos = 0; pos < 3; ++pos)

{

me->itsBreathingCircuitSensor[pos] = NULL;
}

}
}

146 Chapter 3

struct MedicalDisplay* BCPeriodicPoller_getItsMedicalDisplay(const BCPeriodicPoller*
const me) {

return (struct MedicalDisplay*)me->itsMedicalDisplay;
}

void BCPeriodicPoller_setItsMedicalDisplay(BCPeriodicPoller* const me, struct Medical-
Display* p_MedicalDisplay) {

me->itsMedicalDisplay = p_MedicalDisplay;
}

BCPeriodicPoller * BCPeriodicPoller_Create(void) {
BCPeriodicPoller* me = (BCPeriodicPoller *) malloc(sizeof(BCPeriodicPoller));
if(me!=NULL)

{
BCPeriodicPoller_Init(me);

}
return me;

}

void BCPeriodicPoller_Destroy(BCPeriodicPoller* const me) {
if(me!=NULL)

{
BCPeriodicPoller_Cleanup(me);

}
free(me);

}

static void cleanUpRelations(BCPeriodicPoller* const me) {
if(me->itsBCTimer != NULL)

{
struct BCPeriodicPoller* p_BCPeriodicPoller = BCTimer_

getItsBCPeriodicPoller(me->itsBCTimer);
if(p_BCPeriodicPoller != NULL)

{
BCTimer___setItsBCPeriodicPoller(me->itsBCTimer, NULL);

}
me->itsBCTimer = NULL;

}
if(me->itsMedicalDisplay != NULL)

{
me->itsMedicalDisplay = NULL;

}
}

void BCPeriodicPoller___setItsBCTimer(BCPeriodicPoller* const me, struct BCTimer*
p_BCTimer) {

me->itsBCTimer = p_BCTimer;
}

void BCPeriodicPoller__setItsBCTimer(BCPeriodicPoller* const me, struct BCTimer*
p_BCTimer) {

if(me->itsBCTimer != NULL)
{

Design Patterns for Accessing Hardware 147

BCTimer___setItsBCPeriodicPoller(me->itsBCTimer, NULL);

}

BCPeriodicPoller___setItsBCTimer(me, p_BCTimer);

}

void BCPeriodicPoller__clearItsBCTimer(BCPeriodicPoller* const me) {
me->itsBCTimer = NULL;

}

Code Listing 3-24: BCPeriodicPoller.c

3.9 So, What Did We Learn?
In this chapter, we’ve looked at a number of patterns useful for manipulating hardware. The
Hardware Proxy Pattern focuses on encapsulation of hardware-specific details while the
Hardware Adapter Pattern provides a straightforward means to adapt different but similar
devices for the needs of the system. Many times, complex interactions of hardware are
necessary for proper system functions, a benefit of the Mediator Pattern. The Observer Pattern
supports dynamic addition and removal of clients for hardware data, such as from sensors.

The last three patterns provide different means for interfacing to hardware. The Debouncing
Pattern handles the common problem of hardware that produces intermittent contact during
open and closure of metal contact switches. The Interrupt Pattern supports the highly timely
response to events of interest. The Polling Pattern repeatedly polls the hardware for new sensor
data and device state information.

These are basic patterns in the sense that they all address low-level concerns about interfacing
with the hardware. The more difficult design issues have to do with transforming the com
mands and data within the system to achieve the system goals. The next chapter provides
patterns that deal with issues of concurrent execution, from basic concepts to scheduling
execution, avoiding race conditions and deadlock, and synchronizing tasks when necessary.

Chapter 5 deals with finite state machines – their implementation and usage; while in Chapter 6
we look at safety and reliability.

This page intentionally left blank

CHAPTER 4

Design Patterns for Embedding
Concurrency and Resource Management

Chapter Outline
4.1 Basic Concurrency Concepts 152

4.1.1 Identifying Tasks 160

4.1.2 Concurrency in the UML 161

4.1.3 Real-Time Operating Systems 163

Scheduling Patterns 164

4.2 Cyclic Executive Pattern 164

4.2.1 Abstract 165

4.2.2 Problem 165

4.2.3 Pattern Structure 165

4.2.4 Collaboration Roles 165

4.2.4.1 AbstractCEThread 165

4.2.4.2 CyclicExecutive 165

4.2.4.3 CycleTimer 166

4.2.5 ConcreteCEThread 166

4.2.6 Consequences 167

4.2.7 Implementation Strategies 167

4.2.8 Related Patterns 167

4.2.9 Example 167

4.3 Static Priority Pattern 170

4.3.1 Abstract 170

4.3.2 Problem 171

4.3.3 Pattern Structure 171

4.3.4 Collaboration Roles 172

4.3.4.1 AbstractStaticThread 172

4.3.4.2 ConcreteThread 172

4.3.4.3 Mutex 172

4.3.4.4 PriorityQueue 172

4.3.4.5 SharedResource 172

4.3.4.6 Stack 173

4.3.4.7 StaticPriorityScheduler 173

4.3.4.8 StaticTaskControlBlock 173

4.3.5 Consequences 173

4.3.6 Implementation Strategies 173

Design Patterns for Embedded Systems in C
DOI:10.1016/B978-1-85617-707-8.00004-2
Copyright © 2011 Elsevier Inc. 149

150 Chapter 4

4.3.7 Related Patterns 174

4.3.8 Example 175

Task Coordination Patterns 182

4.4 Critical Region Pattern 182

4.4.1 Abstract 182

4.4.2 Problem 182

4.4.3 Pattern Structure 182

4.4.4 Collaboration Roles 183

4.4.4.1 CRSharedResource 183

4.4.4.2 TaskWithCriticalRegion 183

4.4.4.3 TaskWithSharedResource 184

4.4.5 Consequences 184

4.4.6 Implementation Strategies 184

4.4.7 Related Patterns 184

4.4.8 Example 184

4.5 Guarded Call Pattern 190

4.5.1 Abstract 190

4.5.2 Problem 190

4.5.3 Pattern Structure 190

4.5.4 Collaboration Roles 191

4.5.4.1 GuardedResource 191

4.5.4.2 PreemptiveTask 191

4.5.4.3 Semaphore 192

4.5.4.4 StaticPriorityScheduler 192

4.5.5 Consequences 192

4.5.6 Implementation Strategies 192

4.5.7 Related Patterns 193

4.5.8 Example 194

4.6 Queuing Pattern 207

4.6.1 Abstract 207

4.6.2 Problem 207

4.6.3 Pattern Structure 208

4.6.4 Collaboration Roles 208

4.6.4.1 Message 208

4.6.4.2 MessageQueue 208

4.6.4.3 Mutex 209

4.6.4.4 Qtask 209

4.6.5 Consequences 209

4.6.6 Implementation Strategies 210

4.6.7 Related Patterns 210

4.6.8 Example 210

4.7 Rendezvous Pattern 224

4.7.1 Abstract 225

4.7.2 Problem 226

4.7.3 Pattern Structure 226

Design Patterns for Embedding Concurrency and Resource Management 151

4.7.4 Collaboration Roles 226

4.7.4.1 Rendezvous 226

4.7.4.2 Semaphore 227

4.7.4.3 SynchronizingThread 227

4.7.5 Consequences 227

4.7.6 Implementation Strategies 228

4.7.7 Related Patterns 228

4.7.8 Example 228

Deadlock Avoidance Patterns 231

4.8 Simultaneous Locking Pattern 232

4.8.1 Abstract 232

4.8.2 Problem 233

4.8.3 Pattern Structure 233

4.8.4 Collaboration Roles 234

4.8.4.1 MasteredResource 234

4.8.4.2 MultimasteredResource 234

4.8.4.3 Mutex 235

4.8.4.4 QueryMutex 235

4.8.4.5 ResourceClient 235

4.8.4.6 Resource Master 235

4.8.4.7 ResourceMasterSimplified 235

4.8.5 Consequences 236

4.8.6 Implementation Strategies 236

4.8.7 Related Patterns 236

4.8.8 Example 236

4.9 Ordered Locking 242

4.9.1 Abstract 242

4.9.2 Problem 243

4.9.3 Pattern Structure 243

4.9.4 Collaboration Roles 244

4.9.4.1 Mutex 244

4.9.4.2 OrderedResource 244

4.9.4.3 ResourceClient 245

4.9.4.4 ResourceList 247

4.9.4.5 ResourceReference 247

4.9.5 Consequences 247

4.9.6 Implementation Strategies 248

4.9.7 Related Patterns 248

4.9.8 Example 248

4.10 So, What Have We Learned? 255

152 Chapter 4

Patterns in this chapter

Cyclic Executive Pattern – Schedule threads in an infinite loop

Static Priority Pattern – Schedule threads by priority

Critical Region Pattern – Protect resources by disabling task switching

Guarded Call Pattern – Protect resources through mutex semaphores

Queuing Pattern – Serialize access through queuing messages

Rendezvous Pattern – Coordinate complex task synchronization

Simultaneous Locking Pattern – Avoid deadlock by locking resources together

Ordered Locking Pattern – Avoid deadlock by locking resources only in specific orders

4.1 Basic Concurrency Concepts
Most embedded systems need to perform several activities simultaneously. The key to doing
that is through the definition and management of the concurrency model of the system. In this
section, I will provide an overview of the basic terms and concepts of concurrency to support
the understanding and usage of the design patterns that come later in this chapter.

The most important terms to understand are given in the sidebar.

Concurrency Term Definitions

•	 Action Sequence: a series of actions, possibly with decision branch points, in which the order
of execution is fully determined

•	 Arrival Pattern: how the event that begins a concurrency unit arrives; it may be periodic or
aperiodic

•	 Blocking: see priority inversion

•	 Blocking time: the length of time a high-priority task is prevented from running because a
lower-priority task owns a required resource

•	 Concurrency: the simultaneous execution of action sequences

•	 Concurrency unit: a set of actions executed sequentially in the same thread of execution. Also
known as a task or thread

•	 Criticality: the importance of the completion of an action sequence

•	 Deadline: a point in time at which the completion of an action or action sequence becomes
incorrect or irrelevant

•	 Deadlock: a situation in which multiple clients are simultaneously waiting on the same
conditions but the conditions cannot, in principle, be satisfied

Design Patterns for Embedding Concurrency and Resource Management 153

•	 Execution time: the length of time required for an action or action sequence

•	 Interarrival time: the time between task initiation for an aperiodic task

•	 Jitter: variation around the period of a periodic task

•	 Multitasking Preemptive Scheduling: a scheduling schema in which the highest priority task
ready to run will do so, preempting any lower priority tasks that are currently running

•	 Period: the interval between periodic task invocations

•	 Priority: a numeric value used to determine which task, of a set of ready-to-run tasks, will
execute preferentially

•	 Priority inversion: when a lower priority task is running even though a higher priority task is
ready to run. Also known as blocking

•	 Pseudoconcurrency: execution of multiple tasks by executing a single task at a time and
switching focus between tasks according to some scheduling policy

•	 Race condition: a computational situation in which the result depends upon the order of
execution of actions, but that order is not inherently knowable

•	 Real-Time Action: an action for which timeliness is an aspect of correctness

•	 Schedulability: a task set is said to be schedulable if all of its tasks are timely

•	 Synchronization Pattern: how tasks will manage synchronization at specific points in their
respective action sequences

•	 Synchronization Point: a specific action in a sequence at which the task will wait until other
tasks reach corresponding synchronization points

•	 Task: see concurrency unit

•	 Thread: see concurrency unit

•	 Timeliness: the ability of a task to predictably complete prior to its deadline, or to meet its
time-related performance requirements

•	 Urgency: the nearness of an action sequence’s deadline

•	 Worst Case Execution Time: the longest time an action sequence execution can take

Figure 4-1 shows the relationship between actions, action sequences, and tasks1. Each task
(also known as a concurrency unit) consists of a set of actions performed in a specific sequence.
These action sequences are executed independently from the others. This means that within a
task, the order of action execution is fully known; in the case of Task 1 in the figure, first Action
A, then Action B, then Action C or Action D, then Action E and so on. What is not known is
the order of action execution between tasks. Which action executes first? Action A? Action Z?
Action Beta? The answer is you don’t know and you don’t care – if you care, then concurrency
was a poor choice.

1	 Many people draw a distinction between task, thread, and process. However, these are simply the same concept at
different scopes of concern. In this book, we will use these terms interchangeably.

154 Chapter 4

Figure 4-1: Concurrency as a set of action sequences

The only points at which you care about the order of execution between tasks are called
synchronization points. This is indicated in the activity diagram of Figure 4-1 with a pair of
horizontal bars. The first of these is called a join, since it joins together a set of actions from
different tasks into, logically, a single thread. The second bar is called a fork, as it forks from
the single thread into multiple. The semantics of using joins and forks in this way are that the
flow cannot proceed past the synchronization point until all predecessor actions (in this case,
Action E, Action Z, and Action Gamma) have completed. Once all three actions have

Design Patterns for Embedding Concurrency and Resource Management 155

completed, control goes on to subsequent actions (Action F, Action X, and Action Zeta, not
necessarily in that order). Synchronization points are common places in which tasks will share
data or ensure preconditions are met before proceeding.

Tasks can communicate in two fundamental ways. Synchronous communications are like a
phone call – both parties are engaged at the same time and invoke services and exchange data
immediately. The sender “sends and waits” for a response. Synchronous communication is
usually implemented via function calls. Asynchronous communication is like a postcard. The
sender of the message “sends and forgets.” At some later time, the receiver gets and processes
the message or data. The message processing is less timely but the sender need not wait until
the receiver is ready.

For tasks to execute concurrently, they must run on different CPUs or cores within a multicore
CPU. Within a given CPU core, multiple tasks are run using pseudoconcurrency in which only
one task executes at any instant in time, but the processor gives the appearance of concurrency
by switching among the ready tasks. There are many different policies that can be used to select
which task to run, some of which will be provided as patterns later in this chapter.

The basic structure of tasks depends a bit on the scheduling pattern that will invoke them.
A task for a cyclic executive is simply sequential code that returns when it is done. A task
that runs in a cooperative multitasking environment usually runs in a loop but contains points
at which it voluntarily releases control back to the scheduler to allow other tasks to run.
Code Listing 4-1 shows a typical cyclic executive. First, the initial global data declarations are
followed by system initiation, and then (if initiation succeeds), the infinite cyclic executive
task loop.

void main(void) {

/* global static and stack data */

static int nTasks = 3;

int currentTask;

/* initialization code */

currentTask = 0;

if (POST()) { /* Power On Self Test succeeds */

/* scheduling executive */

while (TRUE) {

task1();

task2();

task3();

}; /* end cyclic processing loop */

}

}

Code Listing 4-1: Cyclic executive processing loop

156 Chapter 4

The different ways to schedule the tasks have both benefits and costs. Cyclic executives are
very simple; the scheduler consists of an infinite loop that executes the tasks one after the
other. While simple, it isn’t flexible and can have poor response to incoming events since an
event processed by a task must wait until that task is run within the cycle. In addition, task
executions must be short if other tasks are going to run in a timely fashion. A variant known
as time-triggered cyclic executive starts the cycle at a time boundary; if it completes the cycle
before the next time boundary, it sleeps until the start of the next epoch. A cooperative
round-robin scheduler is basically a cyclic executive in which the tasks don’t run to completion
but instead run to specific points at which they release control back to the scheduling loop. This
approach allows long tasks to run while still permitting other tasks to make progress in their
processing.

While simple, there are a number of problems with both cyclic executives and round-robin
schedulers. First, they are not responsive to urgent events; the task that processes the urgent
event simply runs in its sequence. Secondly, they are not flexible since the schedule order is
determined at design time. Thirdly, they don’t scale well to large numbers of tasks. Lastly, a
single misbehaving task stops the entire system from execution. These kinds of schedulers are
best-suited to very simple systems or systems that are highly safety critical (since simple
systems are far easier to prove correct and certify than complex ones).

The other primary kind of scheduling is preemptive scheduling. In preemptive scheduling, a
scheduler stops the currently executing task when it decides to do so and runs the next task.
The criterion for preempting a task and the selection of the next task in sequence depends on the
particular scheduling policy.

At the high level, tasks in a preemptive scheduler have four significant states. A task is said
to be waiting when the conditions for it to be run are not currently in force. When the
conditions required for a task to run are true, then the task is said to be ready to run.
When the scheduler initiates the task, the task is said to be running. When a task is ready to
run but is being prevented because another task owns a necessary resource, the task is said to
be blocked.

A time-slicing scheduler (also known as time-driven multitasking executive or TDME)
operates on a fairness doctrine; that is, every task gets an equal opportunity to execute. The
tasks are preempted after they run for a specific period of time. TDME schedulers are tuned
by adjusting the duration of the time slices; too long and the other tasks don’t run often
enough to do their jobs, too short and too high a percentage of time is spent switching the task
context.

The most common scheduling pattern for larger embedded systems is priority-based
scheduling. In this approach, each task is assigned a priority, a scalar value that will be used
to determine which task, from the set of ready to run tasks, will be selected for execution.

Design Patterns for Embedding Concurrency and Resource Management 157

A task running within either a time-slicing or priority-based preemptive scheduler runs in an
infinite loop and will be interrupted by the scheduler when it is appropriate for other tasks to
run. The basic structure for this latter task template looks like Code Listing 4-2. You can see in
the code listing where the task static and stack data go. Following these data declarations, there
is usually some initialization or set-up code followed by an infinite, or at least indefinite, loop
where the task cycles endlessly waiting for a signal of interest – this might come from a queue
insertion or event occurrence. When such a signal appears, a switch case statement then
performs the processing. When complete, the task code loops back to wait for the next signal.

/*
here is where private static data goes

*/

static int taskAInvocationCounter = 0;

void taskA(void) {

/* more private task data */

int stufftoDo;

/* initialization code */

stuffToDo = 1;

while (stuffToDo) {

signal = waitOnSignal();

switch (signal) {

case signal1:
/* signal 1 processing here */
break;

case signal2:

/* signal 2 processing here */

case signal3:

/* signal 3 processing here */

};

}; /* end infinite while loop */

}; /* end task */

Code Listing 4-2: Basic task structure with a preemptive scheduler

Priority can be set according to any criterion imaginable, but the two prevalent types of
priority-based scheduling are urgency-based and criticality-based2. Many people use these
terms imprecisely but the terms have precise meanings. Urgency refers to the nearness of a
task’s deadlines while criticality refers to how important the execution of the task is to the
system. Figure 4-2 shows the difference. The curve itself is known as the utility function; this is
the value to the system of the completion of an action or action sequence as a function of time.

2 And, of course, these can be mixed in different ways to assign priorities, if desired.

Running

Waiting

Blocked

Ready to Run

Period Execution Time

Jitter

Blocking Time

Deadline
Slack Time

158 Chapter 4

Utility Function:

“Value” of Action Completion

Time

1.0

Urgency

C
rit

ic
al

ity

Deadline

Figure 4-2: Criticality vs. urgency

The criticality is the height of the curve while urgency is the time distance to the point at which
the criticality falls to zero. It should be noted that a task that is real-time does not necessarily
have a deadline, but deadlines are the most common way to specify timeliness constraints for a
real-time task.

When a task executes, there are several important time-related terms, summarized in Figure 4-3.
For a periodic task (one that executes at a more-or-less fixed rate), two important values are
the period (the duration of the time interval between task initiations) and the jitter (the variation
in the period). Nonperiodic tasks (known commonly as aperiodic tasks) are characterized by
the interarrival time (the time between task initiations) and the minimum interarrival time
(the smallest such time). All tasks have an execution time (the time required to complete the
activities of the task) although for computation of schedulability, the worst-case execution time

Figure 4-3: Time-related terms

Design Patterns for Embedding Concurrency and Resource Management 159

Figure 4-4: Blocking

is usually used. The deadline is the period of time between when the task becomes ready to run
and when it must complete.

When you use semaphores to lock a resource, it can happen that a lower priority task locks a
resource and then is preempted by a higher priority task that needs that resource. The high-
priority task must block to allow the latter task to run and release the resource. This is known as
priority inversion because, contrary to normal priority scheduling rules, the lower priority task
is running even though there is a higher priority task ready to run.

Note that priority inversion cannot be avoided in multitasking preemptive schedule that
includes the use of semaphores to guard resources. That isn’t necessarily bad. What is almost
always bad is unbounded priority inversion. Consider Figure 4-4. In this figure, there are two
tasks. Task A is the higher priority3, executing with a period of 50 ms and an execution time of
10 ms, 5 ms of which it locks resource R. Task Z is the lower priority task, with a period of
1000 ms and needing 500 ms of time to execute, 10 ms of which it locks resource R. Note that
in this example, the deadline for each task occurs at the start of the next period.

Priority inversion occurs when Task Z is running with the resource R locked and then Task A
becomes ready to run. It will immediately preempt Task Z but as soon as it gets to the point at
which it needs to access the resource R it is “stuck”; it must block and allow Task Z to run until
it releases the resource. Once the resource is release by Task Z, Task A again preempts Task Z
and all is as it should be.

If schedulability of tasks is a concern (and it almost always should be), you should examine the
effect of blocking on schedulability. In the case in Figure 4-4, what is the worst case? It happens
when Task Z has just barely locked R and then Task A runs. In this case the total execution time
for Task A is 10 ms plus the blocking time of 10 ms. Since Task A completes in 20 ms (less
than the deadline) and the execution time for Z is 500 ms + 10 runs of Task A (at 10 ms each)
= 600 ms, every one is, as they say “fat, dumb, and happy.” Now consider Figure 4-5.

3 Many Real-Time Operating Systems (RTOSs) use smaller numbers to indicate higher priority. Go figure…

160 Chapter 4

Figure 4-5: Unbounded blocking

In this example, only tasks A and Z use the resource. Task Y is the second-lowest priority task
running every 800 ms for a total of 100 ms, while Task X is the third-lowest priority task with a
period of 500 ms with an execution time of 80 ms. What happens to schedulability now?

The worst case is the following: Task Z runs and locks the resource and then Task A runs,
preempts, runs until it needs to access R, and then blocks. At this point Task Z runs, but
immediately Task Y runs. Since it is a higher priority, it preempts Z. As it runs, task X becomes
ready to run and preempts Y. At this point, Task A is being blocked by three tasks. The
resource will not become available for 190 ms (10+100+80), and Task A now misses its
deadline. This is called unbounded priority inversion and is a critical problem with many
embedded system designs.

There are a number of design solutions, such as using critical regions and variants of the priority
inheritance pattern, that solve this problem. These patterns will be discussed later in this chapter.

4.1.1 Identifying Tasks

The entire previous discussion of what is a task and what are task properties avoids the crucial
question of how to identify a good set of tasks for your particular embedded system. Generally
speaking, good tasks have independent action sequences that interact with others only at
specific points of interactions. However, selecting a good task set involves more than this
because we create task sets to optimize performance and responsiveness. We could, in
principle, run every object (or function, if you prefer) in a separate task thread or we can run
them all in a single task thread. If ease of maintenance is the primary concern, then indepen
dence should be the primary task identification strategy. If schedulability is the primary
concern, then the recurrence properties (e.g., the task period) should guide your choice. Table
4-1 shows common strategies for task identification4.

In practice, the task set you select will use a combination of several of the strategies from Table 4-1.

4	 Borrowed (with permission) from the author’s book Real-Time Agility: The Harmony/ESW Method for Real-Time
and Embedded Systems Development (Addison-Wesley, 2009).

Design Patterns for Embedding Concurrency and Resource Management 161

Table 4-1: Task Identification Strategies

Strategy Description Pros Cons

Single Event

Groups

Interrupt

Handler

Event Source

Related

Information

Independent

Processing

Interface

Device

Recurrence

Properties

Safety

Assurance

Use a single event type per

task

Use a single event type to

raise an interrupt

Group all events from a

single source so as to be

handled by one task

Group all processing of

information (usually

around a resource)

together in a task

Identify different sequences

of actions as threads when

there is no dependency

between the difference

sequences

A kind of event source

Group together events of

similar recurrence

properties such as period,

minimum interarrival time,

or deadline

Group special safety and

reliability assurance

behaviors together

(e.g., watchdogs)

Very simple threading

model

Simple to implement for

handling a small set of

incoming event types;

highly efficient in terms of

handling urgent events

quickly

Simple threading model

Useful for “background”

tasks that perform

low-urgency processing

Leads to simple tasking

model

Useful for handling device

(e.g., bus) interfaces

Best for schedulability; can

lead to optimal scheduling

in terms of timely response

to events

Good way to add on safety

and reliability processing

for safety-critical and

high-reliability systems

Doesn’t scale to many

events well; suboptimal

performance

Doesn’t scale well to many

events; interrupt handles

typically must be very short

and atomic; possible to

drop events; difficult to

share data with other tasks

Doesn’t scale to many

event sources well;

suboptimal performance

Same as Event Source

May result in too many or

too few threads for

optimality; doesn’t address

sharing of resources or task

synchronization

Same as Event Source

More complex

Suboptimal performance

4.1.2 Concurrency in the UML

In the UML, there are three ways to represent concurrency: «active» objects, forks and joins in
activity diagrams, and orthogonal regions in state machines5. Of these, the primary means is
with «active» objects. An «active» object is one that owns a thread of execution. It is usually a
structured object, meaning that it contains part objects inside itself that execute in the context of

5	 For more information about UML and concurrency, see the author’s Real-Time UML Third Edition: Advances in
the UML for Real-Time Systems (Addison-Wesley, 2004).

162 Chapter 4

«active» object’s thread. The «active» object has the explicit responsibility of managing the
event queue for the set of software elements that execute in its thread’s context. The icon for an
«active» object is an object with a heavy border on its left and right sides although often the
stereotype «active» is shown instead. A task diagram is a UML class (or object6) diagram
whose primary focus is on the concurrency units and their interaction. Figure 4-6 shows an
example of an object task diagram containing five tasks («active» objects), one shared resource
(with guarding semaphore), and comments showing concurrency-related metadata (priority,
period, and deadline in this case7). Note that with some tasks we use ports (named connection
points) to connect directly with objects inside the tasks while in other cases we just use links

Figure 4-6: UML task diagram

6	 Remember from Chapter 1 that a class is a specification and an object is an instance. An «active» class is similar to
a task type in Ada while an object is similar to an Ada task.

7	 To perform schedulability analysis we need additional metadata such as worst-case execution time and, since we
have shared resources with blocking, worst-case blocking times.

Design Patterns for Embedding Concurrency and Resource Management 163

(most likely implemented as pointers). In the case of the ControlThread and the
BuildInTestThread, these «active» objects do not contain internal objects but are objects
that run in their own threads.

4.1.3 Real-Time Operating Systems

In many embedded systems, a real-time operating system (RTOS8) provides a set of services
to the application system including:

•	 task services such as the creation, scheduling, and destruction of tasks
•	 event services such as pending on an event, posting, and event and management of event

queues
•	 creation, destruction, and usage of mutex semaphores
•	 time services, such as delay for a specified period of time, and the creation and destruction

of timers
•	 file system services
•	 network input/output services

This is no surprise – these services are offered by most desktop operating systems as well.
RTOSs are different in a number of ways. First and foremost, they are embeddable; they are
designed to be burned into ROM, Flash, or some nonvolatile memory. They may execute from
that memory or copy themselves into volatile memory via a boot loader. Secondly, they are
tuned to be both fast and predictable9. Thirdly, they are usually designed to be scalable; they are
often designed using the Microkernel Architecture Pattern10 and that enables the memory
image of the RTOS to include only those services that the system needs and for which it is
willing to allocate space.

Figure 4-7 shows a typical structure for an RTOS. An RTOS must be specialized for the
target hardware. This is done via a hardware abstraction layer that most RTOS vendors refer to
as the Board Support Package (BSP). Above this are kernel services such as memory, task, and
timer services. Optionally, file services and network services may be added or removed as
needed by the application. The various applications and their tasks run atop the RTOS,
invoking the RTOS services via an application programming interface (API) as necessary.

It is now fairly common to embedded such RTOSs, but it wasn’t so long ago that the
application software had to provide these services. Indeed, many embedded systems running in

8 Wind River’s VxWorks™ and Green Hills' Integrity™ operating systems are popular RTOSs but there are more
than 400 RTOSs in use.

9 Predictability is a scale with chaos on one end and determinism on the other. RTOSs tend toward the
deterministic end of the spectrum.

10 See the author’s Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems (Addision-
Wesley, 2003) for a detailed description of the pattern.

Application A Application B Application C

Task 1 Task X Task Alpha

Task 2 Task Y Task Beta

Task 3 Task Gama

RTOS API

Network Services

File System

Memory
Mangement

Intertask
Communication

Task
Management Timer Services

Board Support Package

164 Chapter 4

Figure 4-7: Basic RTOS structure

smaller memory space and processor target environments cannot afford the time, memory, or
recurring cost overhead of commercial RTOSs.

Let’s now look at some patterns useful for managing the concurrency aspects of embedded
systems. It should be noted that the Interrupt Pattern of the previous chapter is a concurrency
pattern in addition to a hardware access pattern.

Scheduling Patterns
This section contains patterns related to the invocation of tasks. This is a service that an RTOS
will provide, if available. If not, then your application software must provide these services.
Even if your system uses an RTOS to provide scheduling, understanding the benefits and costs
of the different scheduling approaches gives you more information to select an optimal
scheduling strategy.

4.2 Cyclic Executive Pattern
As mentioned earlier in this chapter, the Cyclic Executive Pattern has the advantage of being a
very simple approach to scheduling multiple tasks but isn’t very flexible or responsive to urgent
events. The Cyclic Executive Pattern implements a fairness doctrine for scheduling that allows
all tasks an equal opportunity to run. Although suboptimal in terms of responsiveness, the
Cyclic Executive Pattern is easy to analyze for schedulability (that is, the ability of the system
to predictably meet all task deadlines): the deadline for each task must be greater than or equal
to the sum of all the worst-case execution times for all the tasks plus the loop overhead.
Assuming that the deadline for each task is the duration of one complete task execution cycle,
Equation 4-1 gives the relation that must be true for the task set to be schedulable, where:

Design Patterns for Embedding Concurrency and Resource Management 165

•	 Dj is the deadline for task j
•	 Cj is the worst-case execution time for task j
•	 K is the cyclic executive loop overhead, including the overhead of the task invocation

and return
n Xfor all tasks i, Di ≥ Cj þ K

j¼1

Equation 4-1: Schedulability for Cyclic Executive with n tasks

4.2.1 Abstract

The Cyclic Executive Pattern is used primarily in two situations. First, for very small embedded
applications, it allows multiple tasks to be run pseudoconcurrently without the overhead of a
complex scheduler or RTOS. Secondly, in high-safety relevant systems, the Cyclic Executive
Pattern is easy to certify, hence its prevalence in avionics and flight management systems. The
scheduler is a simple loop that calls each of the tasks in sequence. Each task is simply a function
invoked by the scheduler that runs to completion and then returns.

4.2.2 Problem

Many embedded systems are tiny applications that have extremely tight memory and time
constraints and cannot possibly host even a scaled-down microkernel RTOS. The Cyclic
Executive Pattern provides a low-resource means to accomplish this goal.

4.2.3 Pattern Structure

Figure 4-1 shows the structure of this simple pattern. The CyclicExecutive has a
controlLoop() function that iteratively invokes the run() operation of each of the task
threads. Each run() operation is relatively short and runs to completion.

4.2.4 Collaboration Roles

This section describes the roles for this pattern.

4.2.4.1 AbstractCEThread
The AbstractCEThread provides a standard interface for the threads by declaring a run()
function. It is this function that the Cyclic Executive will invoke to execute the task. When this
function completes, the CyclicExecutive runs the next task in the list.

4.2.4.2 CyclicExecutive
As mentioned in Section 4-1, this class contains the infinite loop that runs the tasks each in
turn. In addition, the CyclicExecutive contains global stack and static data that are needed

166 Chapter 4

either by the tasks or by the scheduler itself. The code in Figure 4-4.1 is typical for a cyclic
executive.

A variant of the pattern is the time-triggered Cyclic Executive. In this variant, the
CyclicExecutive will set up and use the CycleTimer to initiate each epoch
(execution of the task list). Note that while the Interrupt Pattern from Chapter 3 can be and
the Cyclic Executive can simply wait for the interrupt to do the next cycle, unless there is
background processing to perform, it can sit in a so-called “busy loop” and poll for the timer
to elapse.

4.2.4.3 CycleTimer
The CycleTimer isn’t used in the most common variant of the CyclicExecutive; the
fact that it is optional is indicated with the “0,1” multiplicity on the directed association in
Figure 4-8. This timer can invoke an interrupt when it expires or, even more simply, can
return TRUE (non-zero) to the hasElapsed() function. The CyclicExecutive would then
call start() to begin the timing interval for the next epoch.

4.2.5 ConcreteCEThread

The ConcreteCEThread stands for the functions and related data that implement a logical task
in the system. Each has its own implementation of the run() function.

Figure 4-8: Cyclic Executive Pattern

Design Patterns for Embedding Concurrency and Resource Management 167

4.2.6 Consequences

As mentioned, the primary benefit of this pattern is its simplicity. It’s pretty difficult to
get the scheduler wrong. On the other hand, the pattern is demonstrably less responsive
to high-urgency events and this makes the pattern inappropriate for applications that
have high responsiveness requirements. Another benefit of the pattern is that it is very
lightweight in terms of required resources and so is appropriate for very small memory
devices.

A downside of using the pattern is that the interaction of threads is made more challenging
than other patterns. If an output of one task is needed by another, the data must be retained in
global memory or a shared resource until that task runs (See the Task Coordination Patterns
section later in this chapter). On the other hand, because of the lack of preemption, unbounded
blocking is not a concern. Deadlock can only occur because of a mistake – a single misbehaved
task (i.e., one that never returns control to the cyclic executive) shuts the entire system down.
In a preemptive scheduling system, unless the misbehaving task has turned off task switching,
the other tasks will continue to function even if one task fails.

4.2.7 Implementation Strategies

The implementation of this pattern is almost trivially simple. In most cases, the Cyclic
Executive may simply be the application’s main() function and related global data. In other
cases, it will be invoked from main().

4.2.8 Related Patterns

Because the pattern’s responsiveness is demonstrably suboptimal, it is often augmented with
some interrupt service routines (see the Interrupt Pattern in Chapter 3) for high urgency events.
Another use for the Interrupt Pattern with the Cyclic Executive Pattern is to implement the
epoch timer response with the time-triggered cyclic executive, although the Polling Pattern
(also from Chapter 3) may be used to poll the timer as well.

The Cyclic Executive Pattern does not address data sharing between tasks. The Cyclic
Executive does define global data structures that can be used for this purpose but it is possible
to mix other patterns for this purpose (see the Task Coordination patterns section in this
chapter). Because there is no preemption, global data do not require access serialization with
this pattern.

4.2.9 Example

The example shown in Figure 4-9 shows the cyclic executive scheduler GasControlExecutive.
Its controlLoop() function calls the run services in each of the threads. Because we used

Figure 4-9: Cyclic Executive Example

Design Patterns for Embedding Concurrency and Resource Management 169

the file implementation, it was necessary to encode the name of the file in the name of the
run function of each to avoid global naming clash. In the example, I implemented the
time-triggered variant of the pattern. As you can see in Code Listing 4-3, the controlLoop()

function implements a busy wait for the elapse of the epoch time. Note that the timer
startEpochTimer() function resets the elapsed variable to FALSE (0) before it starts the
timer. When the timer elapses, this variable is set to TRUE (1).

#include "GasControlExecutive.h"

#include "GasActuatorThread.h"

#include "GasControlEpochTimer.h"

#include "GasDisplayThread.h"

#include "GasSensorThread.h"

void controlLoop(void) {

while (TRUE) {

startEpochTimer();

GasSensorThread_run();

GasActuatorThread_run();

GasDisplayThread_run();

while(!epochTimerHasElapsed()) ;

};

}

Code Listing 4-3: GasControlExecutive.c

Each of the code files for the other elements simply declare their data and functions and the
related C file provides the implementation. For example, the implementation for the Share
dData file is given in Code Listing 4-4 and Code Listing 4-5.

#ifndef SharedData_H

#define SharedData_H

extern int commandedGasFlow;

extern int measuredGasFlow;

#endif

Code Listing 4-4: SharedData.h

#include "SharedData.h"

int commandedGasFlow;

int measuredGasFlow;

Code Listing 4-5: SharedData.c

� �

170 Chapter 4

void GasDisplayThread_run(void) {
printf("Measured Gas Flow %d\n", measuredGasFlow);
printf("commandedGasFlow %d\n\n", commandedGasFlow);

}

Code Listing 4-6: GasDisplayThread.c

4.3 Static Priority Pattern
The Static Priority Pattern is supported by most real-time operating systems. It has good response
to high-priority events and scales well to large numbers of tasks. Different schemas can be used to
assign priorities, but, as mentioned earlier, priorities are usually assigned based on urgency,
criticality, or some combination of the two. When assigned using rate monotonic scheduling (see
the Implementation Strategies section below), this scheduling pattern is both optimal (you can’t
do better with other scheduling strategies) and stable (in an overload situation, which tasks will
fail is predictable – the lowest priority tasks). Assuming that each task deadline occurs at the end
of the period, the system is schedulable if the inequality in Equation 4-2 holds, where:

• Cj is the worst case execution time for task j
• Tj is the period (deadline occurs at the end of the period) for task j
• Bj is the worst-case blocking time for task j
• n is the number of tasks

X Cj B1 Bn−1 1 þ max ; � � � ; ≤ utilizationðnÞ ¼ nð2n � 1Þ
j

Tj T1 Tn−1

Equation 4-2: Schedulability for Static Priority Pattern with RMS priorities for n tasks11

In the case where the task is not periodic, the minimum interarrival time for task j (the smallest
time between successive invocation of the same task) is used. Note that the blocking terms only
extend to the n-1 task; this is because by definition, the lowest priority task cannot be blocked.

4.3.1 Abstract

The Static Priority Pattern is a very common pattern in embedded systems because of its strong
RTOS support, ease of use, and good responsiveness to urgent events. It may be overkill for
very small, simple, or highly predictable systems that are not driven by urgent asynchronous
events. The pattern is easy to analyze for schedulability but naïve implementation with
blocking resource sharing can lead to unbounded priority inversion. Fortunately, there are
resource sharing patterns that can avoid this problem or at least bound priority inversion to at

11	 For a proof of this equation, see Lui and Leyand, Scheduling algorithms for multiprogramming in a hard real-
time environment. Journal of ACM 20, January 1973, 40–61.

Design Patterns for Embedding Concurrency and Resource Management 171

most one level. The most common way to assign priorities is on the basis of deadline duration
(that is, task urgency); the shorter the deadline, the higher the priority. If the deadline is at the
end of the period, this schema is known as rate monotonic scheduling. It assumes that all tasks
are periodic, but the minimum interarrival interval can be used for aperiodic tasks, although this
often results in overdesigning the system with an impact on system recurring cost.

4.3.2 Problem

The Static Priority Pattern provides a simple approach to scheduling tasks based on priority.
This pattern addresses systems with more tasks than the Cyclic Executive Pattern and also
emphasizes responsiveness to urgent events over fairness.

4.3.3 Pattern Structure

Figure 4-10 shows the structure for the Static Priority Pattern. The colored classes indicate the
element normally implemented for you by an RTOS. Note that the mapping constraint on the diagram
indicates that there is a StaticTaskControlBlock for each AbstractStaticThread. This
holds data about the task needed by the scheduler to support scheduling and preemption.

Figure 4-10: Static Priority Pattern

172 Chapter 4

4.3.4 Collaboration Roles

This section describes the roles for this pattern.

4.3.4.1 AbstractStaticThread
The AbstractStaticThread class is an abstract (i.e., noninstantiable) super class for
Concrete Thread. Abstract Thread associates with the Scheduler; specifically the Scheduler
executes the run() function of the thread to run the thread. The AbstractStaticThread

specifies the run interface to be realized by the ConcreteThread.

4.3.4.2 ConcreteThread
The ConcreteThread is an «active» class that serves as a container and thread context
for a set of passive “semantic” objects that do the real work of the system. The
ConcreteThread class provides a straightforward means of attaching these semantic
objects into the concurrency architecture. ConcreteThread represents the threads in the
application software.

4.3.4.3 Mutex
The Mutex is a mutual exclusion semaphore class that serializes access to a
SharedResource. The guarded functions of the SharedResource invoke the lock()

function of the Mutex whenever they are called and release() once the service is complete.
Other client threads that attempt to invoke a service when its associated Mutex is locked
become blocked until the Mutex is unlocked. The blocking is performed when the Mutex

semaphore signals the StaticPriorityScheduler that a call attempt was made by the
currently active thread. The mutexID identifies which Mutex is blocking the task. This
element is usually provided by the RTOS.

4.3.4.4 PriorityQueue
The PriorityQueue is a queue of StaticTaskControlBlock pointers organized by
priority. The pattern uses two distinct instances of PriorityQueue. The first is the ready
queue. When a task becomes ready to run, a pointer to its StaticTaskControlBlock is
inserted into the queue in order of its priority. If the priority of the task is higher than the
currently running task (or becomes so when the current task terminates), then the task is
removed from the ready queue and run. The other PriorityQueue is the blocked queue; this
queue holds the set of tasks currently blocked because they tried to access SharedResources

protected by a locked Mutex. This element is usually provided by the RTOS.

4.3.4.5 SharedResource
A SharedResource is a class whose instances are shared by one or more ConcreteThreads.
For the system to operate properly in all cases, all shared resources must either be reentrant
(meaning that corruption from simultaneous access cannot occur) or they must be protected via
access serialization. Protection via mutual exclusion semaphores is discussed in the Guarded Call
Pattern later in this chapter.

Design Patterns for Embedding Concurrency and Resource Management 173

4.3.4.6 Stack
Each AbstractThread has a Stack for return addresses and passed parameters. This is
normally only explicit at the assembly language level within the application thread, but is an
important part of the scheduling infrastructure. This element is usually provided by the RTOS.

4.3.4.7 StaticPriorityScheduler
This class orchestrates the execution of multiple threads based on their priority according to a
simple rule: always run the highest priority ready thread. When the «active» thread object is
created, it (or its creator) calls the createThread() operation to create a thread for the
«active» object. Whenever this thread is executed by the StaticPriorityScheduler, it
calls the StartAddr address (except when the thread has been blocked or preempted, in which
case it calls the EntryPoint address). This element is usually provided by the RTOS.

4.3.4.8 StaticTaskControlBlock
The StaticTaskControlBlock contains the scheduling information for its corresponding
AbstractThread object. This includes the priority of the thread, the default start address and the
current entry address, if it was preempted or blocked prior to completion. The
StaticPriorityScheduler maintains a StaticTaskControlBlock object for each
existing AbstractThread. This element is usually provided by the RTOS.

4.3.5 Consequences

As previously mentioned, the Static Priority Pattern runs well with potentially large numbers of
tasks and provides responsiveness to incoming events. Typically the tasks exist in waiting for
initiation most of the time and become active only when an initiating event (such as the elapse
of their period) occurs. Priority is only an issue when there is more than one task ready to run;
in this case the highest priority task will be run preferentially.

It is common to use blocking to serialize access to resources. While this is highly effective,
naïve implementation can lead to unbounded priority inversion in the manner described in the
first section of this chapter. See the section on resource sharing patterns later in this chapter for
patterns to address this concern.

4.3.6 Implementation Strategies

By far, the most common implementation of this pattern is to use a commercial RTOS to
provide the scheduling infrastructure. While this wasn’t true 20 years ago, today there are
dozens of popular RTOSs that will fit the constraints of most embedded systems.

Regardless of whether you buy a commercial RTOS or roll your own, the problem of assigning
priorities must still be addressed. RMS (rate monotonic scheduling) is the most common means
to assign priorities. It is optimal and stable. By optimal, I mean that if the task set can be

174 Chapter 4

scheduled by any means whatsoever, it can also be scheduled by RMS. By stable, I mean that in
the case of an overloaded situation in which some tasks will miss their deadlines, with static
priority scheduling, it is clear which tasks will fail – those with the lowest priority. RMS simply
makes the priority a function of the period – the shorter the period, the higher the priority12.

RMS makes a number of assumptions about the tasks but is reasonably robust in the presence
of violations to those assumptions:

• tasks are periodic
• task deadlines occur at the end of the period
• tasks are infinitely preemptable

As to the first assumption, if tasks are not periodic, then they can occur at a maximum rate (that
is, with a minimum time between task invocations). This value can be used instead of the period
to determine the priority.

For the second assumption, it sometimes happens that the deadline is less than the period. In
this case, simply use the deadline (Dj) instead of the period (Tj) to assign the priority.

The last assumption is that a currently running task can be preempted as soon as a higher
priority task becomes ready to run. This isn’t true if the currently running task is in a critical
region (a period of time in which task switching is disabled – see the Critical Region Pattern
later in this chapter). However, if the critical regions are short, this is usually not a problem.
Such situations can be analyzed by treating the duration of the longest critical region of all other
tasks as the worst case blocking time for the task under analysis.

4.3.7 Related Patterns

The Static Priority Pattern offers a more responsive alternative to fairness doctrine approaches
such as the Cyclic Executive Pattern. When resources must be shared with other tasks, this
pattern must be mixed with resource sharing patterns such as those in this chapter. When tasks
need to coordinate, this pattern can be mixed with task coordination patterns. The task
coordination patterns overlap a bit with the resource sharing patterns since one of the ways that
tasks coordinate is by sharing common resources.

A very similar pattern to the Static Priority Pattern is the Dynamic Priority Pattern. In this
pattern, the design does not specify the priority of the task; this is computed at run-time. The
most common priority assignment strategy is known as Earliest Deadline First (EDF) sche
duling. In EDF, the task must specify the duration of its deadline from which the scheduler
computes the absolute time of the elapse of this task’s next deadline. The task is then put into

12	 Note that many RTOSs use small values to indicate higher priorities so that a priority of 5 is a higher priority than
a priority of 10.

� �

Design Patterns for Embedding Concurrency and Resource Management 175

the ready queue based on the nearness of the next absolute deadline for all ready tasks. That is,
if a task A is being queued that has a nearer next deadline than another task B, then it will be
placed in front of task B in the queue; otherwise, it will be placed later in the queue. EDF is
optimal (in the same sense that RMS is) but it is not stable; in an overload situation which tasks
will fail to meet their deadlines cannot be computed at design time. If you use EDF scheduling,
then schedulability can be computed in a manner similar to RMS scheduling, except that the
upper utilization bound is 1.00 rather than a function of the number of tasks. This is shown in
Equation 4-3.

X Cj B1 Bn−1þ max ; � � � ; ≤ 1:00
j

Tj T1 Tn−1

Equation 4-3: Earliest Deadline First schedulability

4.3.8 Example

In this example, we are going to assume the use of a commercial RTOS so we won’t explicitly
model or code the infrastructure elements of the pattern. Instead, the example (See Figure 4-11)
focuses on concrete threads and shared resources.

In the code listings below, the calls to initialize timers, pend on the OS events, and create tasks
that are all RTOS-dependent.

void main(void) {
/* initialize the links and start the tasks */
MotorPositionSensor_initRelations();
MotorDisplay_initRelations();
MotorController_initRelations();

/* now let the tasks do their thing */
while (TRUE) {
};

};

Code Listing 4-7: Static Priority Example main.c

The code listings for the MotorPositionSensor, MotorDisplay, and
MotorController are very simple, as can be seen in Code Listing 4-8 through Code
Listing 4-13. The interesting code can be found in the _Init() functions, where the OS
event queues are created and the tasks created with the corresponding _run() functions.
A queue size of 10 events is more than enough space if the events are handled in a timely
fashion. Note also that each task is created with a 1024 int sized stack. Following the task

176 Chapter 4

Figure 4-11: Pattern Example

creation, the corresponding _run() function creates an OS timer (with the RETRIGGER

parameter so that the timer repeats automatically) and then runs an infinite loop. Within
the loop, the task then pends on the event appearance. When the corresponding event with
the proper id occurs, the OSQPend() function returns and the task is initiated. Since this is an
infinite loop, once the loop completes, each task iterates and goes to sleep waiting for its
next event.

The code listings for MotorData (Code Listing 4-14 and Code Listing 4-15) are even simpler
since it is just a passive resource with services invoked by the active threads. Again note that
the calls to create, initialize, and use threads are RTOS-specific.

#ifndef MotorPositionSensor_H

#define MotorPositionSensor_H

Design Patterns for Embedding Concurrency and Resource Management 177

void MotorPositionSensor_Init(void);

void MotorPositionSensor_Cleanup(void);

void MotorPositionSensor_run(void);

void getPosition(void);

void MotorPositionSensor_initRelations(void);

#endif

Code Listing 4-8: MontorPositionSensor.h

#include "MotorData.h"

#include "MotorPositionSensor.h"

#include <stdlib.h>

static int mps_priority = 5;

static int mps_eventQueue[10];

static int mps_stack[1024];

void MotorPositionSensor_Cleanup(void) {

}

void MotorPositionSensor_Init(void) {

/* create the OS event queue and the task */

/* use a queue of 10 events, and a 1024 element stack */

OSQCreate (&mps_eventQueue[0], 10);

OSTaskCreate (MotorPositionSensor_run, NULL,

(void *)&mps_stack[1024], 5);

/* now run the task */
MotorPositionSensor_run();

}

void MotorPositionSensor_run(void) {

int os_pend_timer_id;

os_pend_timer_id = OSCreateTimer(50, RETRIGGER);

while (TRUE) {
OSQPend(os_pend_timer_id, WAIT_FOREVER);
getPosition();

};

}

void getPosition(void) {

int x;

/* get position by reading the sensor */

x = rand();

setMeasPos(x);

}

178 Chapter 4

void MotorPositionSensor_initRelations(void) {

MotorPositionSensor_Init();

}

Code Listing 4-2: MotorPositionSensor.c

#ifndef MotorDisplay_H

#define MotorDisplay_H

void MotorDisplay_Init(void);

void MotorDisplay_Cleanup(void);

void MotorDisplay_run(void);

void display(void);

void MotorDisplay_initRelations(void);

#endif

Code Listing 4-3: MotorDisplay.h

#include "MotorData.h"

#include <stdio.h>

#include "MotorDisplay.h"

static int md_priority = 10;

static int md_eventQueue[10];

static int md_stack[1024];

void MotorDisplay_Init(void) {
/* create the OS event queue and the task */
/* use a queue of 10 events, and a 1024 element stack */
OSQCreate (&md_eventQueue[0], 10);
OSTaskCreate (MotorDisplay_run, NULL,

(void *)&md_stack[1024], 5);

/* now run the task */

MotorDisplay_run();

}

void MotorDisplay_Cleanup(void) {

}

void MotorDisplay_run(void) {
int os_pend_timer_id;
os_pend_timer_id = OSCreateTimer(500, RETRIGGER);

Design Patterns for Embedding Concurrency and Resource Management 179

while (TRUE) {
OSQPend(os_pend_timer_id, WAIT_FOREVER);
display();
};

}

void display(void) {
printf("Commanded position = %d\n", getCmdPos());
printf("Measured position = %d\n\n", getMeasPos());

}

void MotorDisplay_initRelations(void) {

MotorDisplay_Init();

}

Code Listing 4-4: MotorDisplay.c

#ifndef MotorController_H

#define MotorController_H

void MotorController_Init(void);

void MotorController_Cleanup(void);

void MotorController_run(void);

void move(void);

void zero(void);

void MotorController_initRelations(void);

#endif

Code Listing 4-5: MotorController.h

#include "MotorData.h"

#include <stdlib.h>

#include "MotorController.h"

static int mc_priority = 8;

static int mc_eventQueue[10];

static int mc_stack[1024];

int motor1Pos;

int motor2Pos;

180 Chapter 4

void MotorController_Init(void) {
/* use a queue of 10 events, and a 1024 element stack */
/* create the OS event queue and the task */
OSQCreate (&mc_eventQueue[0], 10);
OSTaskCreate (MotorController_run, NULL,
(void *)&mc_stack[1024], 5);

/* now run the task */
MotorController_run();

}

void MotorController_Cleanup(void) {
}

void MotorController_run(void) {
int os_pend_timer_id, x, y;
os_pend_timer_id = OSCreateTimer(100, RETRIGGER);

while (TRUE) {

OSQPend(os_pend_timer_id, WAIT_FOREVER);;

move();

};

}

void move(void) {
int m1Pos, m2Pos;
/* this function would read the instrument

panel to set the motor movement settings
to set the position of the motors.
Note that if you want to set only one
of the motors, then set a negative value
for the commanded position of the other

*/

m1Pos = rand();

m2Pos = rand();

if (m1Pos >= 0)
motor1Pos = m1Pos;

if (m2Pos >=0)
motor2Pos = m2Pos;

setCmdPos(100*m1Pos + m2Pos);
}

void zero(void) {
motor1Pos = 0;
motor2Pos = 0;
setCmdPos(0);

}

void MotorController_initRelations(void) {
MotorController_Init();

}

Design Patterns for Embedding Concurrency and Resource Management 181

Code Listing 4-13: MotorController.c

#ifndef MotorData_H

#define MotorData_H

#define RETRIGGER (2)

#define WAIT_FOREVER (0)

extern int commandedPosition;

extern int measuredPosition;

int getCmdPos(void);

int getMeasPos(void);

void setCmdPos(int x);

void setMeasPos(int x);

#endif

Code Listing 4-14: MotorData.h

#include "MotorData.h"

int commandedPosition = 0;

int measuredPosition = 0;

int getCmdPos(void) {

return commandedPosition;

}

int getMeasPos(void) {

return measuredPosition;

}

void setCmdPos(int x) {

commandedPosition = x;

}

void setMeasPos(int x) {

measuredPosition = x;

}

Code Listing 4-15: MotorData.c

182 Chapter 4

Task Coordination Patterns
To be honest, when tasks are truly independent, the concurrency design is pretty simple. The
problem is that independence is not the normal condition for concurrent threads. In virtually all
embedded systems, tasks are “mostly independent”13. The four patterns of this section include
the Critical Region, Guard Call, Queuing, and Rendezvous Patterns. The first three of these are
often used to serialize access to shared resources as well and so could have been reasonably
placed in that section of this chapter.

4.4 Critical Region Pattern
The critical region pattern is the simplest pattern for task coordination around. It consists of
disabling task switching during a region where it is important that the current task executes
without being preempted. This can be because it is accessing a resource that cannot be
simultaneously accessed safely, or because it is crucial that the task executes for a portion of
time without interruption.

4.4.1 Abstract

In a preemptive multitasking environment (see the Static Priority Pattern, above), there may be
periods of time during which a task must not be interrupted or preempted. The Critical Region
Pattern address these intervals by disabling task switching or even by disabling interrupts (see
the Interrupt Pattern, above). This provides uninterrupted execution by the current task. Once
beyond the critical region, the task must reenable task switching (or interrupts) or the system
will fail.

4.4.2 Problem

There are two primary circumstances under which a task should not be interrupted or pre
empted. First, it may be accessing a resource that may not be safely accessed by multiple clients
simultaneously. Secondly, the task may be performing actions that must be completed within a
short period of time or that must be performed in a specific order. This pattern allows the active
task to execute without any potential interference from other tasks.

4.4.3 Pattern Structure

Figure 4-12 shows just how structurally simple this pattern is. In a common variant, the
protected element is a resource and not a task; this is shown in Figure 4-13. In either case,

13	 In the same sense that Miracle Max reports that Wesley is “mostly dead” (Goldman, W., 1973. Princess Bride: S,
Morgenstern’s Classic Tale of True Love and High Adventure. Harcourt).

Design Patterns for Embedding Concurrency and Resource Management 183

Figure 4-12: Critical Region Pattern

Figure 4-13: Critical Region Pattern with Resource

within the relevant services, task switching must be disabled before the critical region begins
and reenabled before the service ends. Note that unlike the Guarded Call Pattern, the scheduler
is not involved in the critical region begin/end process other than to provide services to disable/
enable task switching. If the scheduler does not provide such services, then the critical region
can be controlled with the user of the C asm directive to turn on or off interrupt processing at
the hardware level.

4.4.4 Collaboration Roles

This section describes the roles for this pattern.

4.4.4.1 CRSharedResource
This element is used in the variant of the Critical Resource Pattern that disables task switching
to prevent simultaneous access to the resource. In the case of the pattern, the protected resource
is the value attribute. Note that all the relevant services must implement the critical region to
protect the resource. In this case, it means that both the setValue() and getValue()

functions must separately implement the critical region.

4.4.4.2 TaskWithCriticalRegion
This element is used when the task wants to disable task switching for reasons unrelated to
sharing resources (usually related to timing). The criticalService() disables and enables task
switching or interrupts during its critical region(s).

184 Chapter 4

4.4.4.3 TaskWithSharedResource
This element stands for the set of all tasks that may want to access the shared resource
(hence the ‘*’ multiplicity on the directed association). These tasks have no knowledge
about the method for protecting the resource, since that is encapsulated within the shared
resource.

4.4.5 Consequences

This pattern enforces the critical region policies well and can be used to turn off the scheduled
task switches or, more draconianly, disable interrupts all together. Care must be taken to
reenable task switching once the element is out of its critical region. Additionally, the use of this
pattern can affect the timing of other tasks. Critical regions are usually short in duration for this
reason. There is no problem of unbounded priority inversion because all task switching is
disabled during the critical region.

Care must be taken when nesting calls to functions with their own critical regions. If such a
function is called within the critical region of another, the nest function call will reenable
task switching and end the critical region of the caller function.

4.4.6 Implementation Strategies

This pattern is usually implemented either by using scheduler-provided services such as
OS_disable_task_switching() and OS_enable_task_switching() (or something
similar) or by introducing assembly language instructions to disable or enable interrupt
processing at the hardware level.

4.4.7 Related Patterns

This pattern is only appropriate when multiple tasks can access the same resource or services
or when other tasks could interrupt time-critical processing of the current task. For this reason,
it is not appropriate with the Cyclic Executive Pattern, but is often used with the Static
Priority Pattern.

4.4.8 Example

The example in Figure 4-14 shows a single task CRRobotArmManager with a function
moveRobotArm that has a critical region during the actual movement of the arm.

In either case, the critical region is encapsulated entirely with the moveRobotArm() and
motorZero() services, as can be seen in Code Listing 4-16 and Code Listing 4-17.

Design Patterns for Embedding Concurrency and Resource Management 185

Figure 4-14: Critical Region Pattern

#ifndef CRRobotArmManager_H
#define CRRobotArmManager_H

struct CRDisplay;
struct RobotArm;
struct UserInput;

typedef struct CRRobotArmManager CRRobotArmManager;
struct CRRobotArmManager {

struct CRDisplay* itsCRDisplay;
struct RobotArm* itsRobotArm;
struct UserInput* itsUserInput;

};

/* Constructors and destructors:*/
void CRRobotArmManager_Init(CRRobotArmManager* const me);
void CRRobotArmManager_Cleanup(CRRobotArmManager* const me);

186 Chapter 4

/* Operations */
void CRRobotArmManager_motorZero(CRRobotArmManager* const me);
void CRRobotArmManager_moveRobotArm(CRRobotArmManager* const me);
struct CRDisplay* CRRobotArmManager_getItsCRDisplay(const
CRRobotArmManager* const me);

void CRRobotArmManager_setItsCRDisplay(CRRobotArmManager* const
me, struct CRDisplay* p_CRDisplay);

struct RobotArm* CRRobotArmManager_getItsRobotArm(const

CRRobotArmManager* const me);

void CRRobotArmManager_setItsRobotArm(CRRobotArmManager* const me,
struct RobotArm* p_RobotArm);

struct UserInput* CRRobotArmManager_getItsUserInput(const

CRRobotArmManager* const me);

void CRRobotArmManager_setItsUserInput(CRRobotArmManager* const me,
struct UserInput* p_UserInput);

CRRobotArmManager * CRRobotArmManager_Create(void);

void CRRobotArmManager_Destroy(CRRobotArmManager* const me);

#endif

Code Listing 4-6: CRRobotArmManager.h

#include "CRRobotArmManager.h"

#include "CRDisplay.h"

#include "RobotArm.h"

#include "UserInput.h"

static void cleanUpRelations(CRRobotArmManager* const me);

void CRRobotArmManager_Init(CRRobotArmManager* const me) {

me->itsCRDisplay = NULL;

me->itsRobotArm = NULL;

me->itsUserInput = NULL;

}

void CRRobotArmManager_Cleanup(CRRobotArmManager* const me) {
cleanUpRelations(me);

}

void CRRobotArmManager_motorZero(CRRobotArmManager* const me) {
int success = 1;

Design Patterns for Embedding Concurrency and Resource Management 187

OS_disable_task_switching();

/* critical region code */

success = RobotArm_moveTo(me->itsRobotArm,0,0,0);

/* critical region ends */

OS_enable_task_switching();

if (!success)
CRDisplay_printMsg(me->itsCRDisplay,"Cannot zero!");

}

void CRRobotArmManager_moveRobotArm(CRRobotArmManager* const me) {
/* local stack variable declarations */
int x, y, z, success = 1;
/*noncritical region code */

/*	 note that the function below has its

own critical region and so cannot be

called inside of the critical region

of this function

*/

CRRobotArmManager_motorZero(me);

x = UserInput_getX(me->itsUserInput);

y = UserInput_getY(me->itsUserInput);

z = UserInput_getX(me->itsUserInput);

/* critical region begins */

OS_disable_task_switching();

/* critical region code */

success = RobotArm_moveTo(me->itsRobotArm,x,y,z);

/* critical region ends */

OS_enable_task_switching();

/* more noncritical region code */
CRDisplay_printInt(me->itsCRDisplay, "Result is ", success);

}

struct CRDisplay* CRRobotArmManager_getItsCRDisplay(const
CRRobotArmManager* const me) {

return (struct CRDisplay*)me->itsCRDisplay;
}

void CRRobotArmManager_setItsCRDisplay(CRRobotArmManager* const
me, struct CRDisplay* p_CRDisplay) {

me->itsCRDisplay = p_CRDisplay;

188 Chapter 4

}

struct RobotArm* CRRobotArmManager_getItsRobotArm(const
CRRobotArmManager* const me) {

return (struct RobotArm*)me->itsRobotArm;
}

void CRRobotArmManager_setItsRobotArm(CRRobotArmManager* const me,
struct RobotArm* p_RobotArm) {

me->itsRobotArm = p_RobotArm;
}

struct UserInput* CRRobotArmManager_getItsUserInput(const
CRRobotArmManager* const me) {

return (struct UserInput*)me->itsUserInput;
}

void CRRobotArmManager_setItsUserInput(CRRobotArmManager* const
me, struct UserInput* p_UserInput) {

me->itsUserInput = p_UserInput;
}

CRRobotArmManager * CRRobotArmManager_Create(void) {
CRRobotArmManager* me = (CRRobotArmManager *)

malloc(sizeof(CRRobotArmManager));
if(me!=NULL)

{
CRRobotArmManager_Init(me);

}
return me;

}

void CRRobotArmManager_Destroy(CRRobotArmManager* const me) {
if(me!=NULL)

{
CRRobotArmManager_Cleanup(me);

}
free(me);

}

static void cleanUpRelations(CRRobotArmManager* const me) {
if(me->itsCRDisplay != NULL)

{
me->itsCRDisplay = NULL;

}
if(me->itsRobotArm != NULL)

{
me->itsRobotArm = NULL;

}

Design Patterns for Embedding Concurrency and Resource Management 189

if(me->itsUserInput != NULL)
{

me->itsUserInput = NULL;
}

}

Code Listing 4-17: CRRobotArmManager.c

A little bit about semaphores

Edsger Dijkstra invented the concept of a software semaphore for the coordination of tasks
wanting to share resources. The most common implementation is a counting semaphore which
allows, at most n tasks, to use a resource and blocks additional tasks should they attempt to
access the resource until one of the tasks that has successfully locked (said to own the
semaphore) unlocks the resource. n is said to be the capacity of the semaphore. A binary semaphore
is a counting semaphore for which n = 1. A mutual exclusion (mutex) semaphore is a binary
semaphore with some extra properties, which are OS dependent. Binary semaphores are used
for both mutual exclusion and event notification, while mutexes are used only to enforce mutual
exclusion.

Semaphore are initialized with n when whey are created, something like

semaPtr = OS_create_semaphore(int n);
which initializes an internal thread counter to n.

The semaphore offers two other services, lock() and release() (which, being Dutch,
Dijkstra called P (for Prolaag or “test”)1 and V(for verhoog or “increase”)). lock() works by
decrementing the internal counter by 1. If the count has decremented to 0 or less, then the
thread calling the lock() function is blocked by the scheduler. The release() function
increments the semaphore counter, so that if there is are threads waiting on that lock, one of
them will unblock and run (that is, its call to lock() now returns). Note that you usually can’t
test to see if a call to lock() will block or not before the thread calls it; it will either succeed
immediately or block the thread and (hopefully) be released later. Put another way, there is
usually no way to know if there are threads blocking on that semaphore or not before you call

lock(). However, some RTOS give a trylock() function that locks if the resource is
available or returns an error code if not.

void lock(Semaphore* s) {
do {

wait();
} while (s->count <= 0);
--s->count; /* this operation must be implemented as a

critical region */

1 Or it could be P for “Piraat” (pirate). No one seems to know for sure.

190 Chapter 4

};

void release(Semaphore* s) {
++s->count; /* this operation must be implemented as a

critical region */
}

Other terms for lock include decrement and wait; other terms for release include free, increment,
and signal, used in symmetric pairs, (lock/free, lock/release, wait/signal, decrement/increment)
depending on the usage of the semaphore.

Mutexes may be recursive, a useful property in which once a thread has successfully locked the
semaphore, further calls it makes to lock() do not block the thread (that is, the thread cannot
block itself through multiple calls to the same mutex). For a recursive mutex, the semaphore is freed
by a thread when the number of calls it makes to free equals the number of calls it made to lock().

4.5 Guarded Call Pattern
The Guarded Call Pattern serializes access to a set of services that could potentially interfere
with each other in some way if called simultaneously by multiple callers. In this pattern, access
is serialized by providing a locking mechanism that prevents other threads from invoking the
services while locked.

4.5.1 Abstract

The Guarded Call Pattern uses semaphores to protect a related set of services (functions) from
simultaneous access by multiple clients in a preemptive multitasking environment, in a process
known as mutual exclusion. The Guarded Call Pattern provides timely access to services,
provided that they are not in use by other tasks. However, if not mixed with other patterns, the
use of this pattern can lead to unbounded priority inversion, such as that shown in Figure 4-5.

4.5.2 Problem

The problem this pattern addresses is the need for a timely synchronization or data exchange
between threads. In such cases, it may not be possible to wait for an asynchronous (queuing)
rendezvous. A synchronous (function call) rendezvous can be made more timely, but this must
be done carefully to avoid data corruption and erroneous computation.

4.5.3 Pattern Structure

The pattern structure for this pattern is shown in Figure 4-15. In this case, multiple
PreemptiveTasks access the GuardedResource through its functions. Inside those

Design Patterns for Embedding Concurrency and Resource Management 191

Figure 4-15: Guarded Call Pattern

functions, calls are made to lock and release the resource. The scheduler supports blocking by
placing a task on the blocked queue when it invokes a locked semaphore and unblocks it when
that semaphore is released. The scheduler must implement the semaphore lock() function as a
critical region to eliminate the possibility of race conditions.

4.5.4 Collaboration Roles

This section describes the roles for this pattern.

4.5.4.1 GuardedResource
The GuardedResource is a shared resource that employs mutex semaphores to enforce
mutual exclusion of access to its methods. Inside the relevant functions14, and prior to the
access of the resource per se, a call is made to the lock() function of the associated
Semaphore instance. if the Semaphore is in the unlocked state, then it becomes locked; if it is
in the locked state, then the Semaphore signals the StaticPriorityScheduler to block
the currently running task. It is important that the relevant functions of a specific resource
instance must all share the same instance of the Semaphore class. This ensures that they are
protected together as a unit from simultaneous access by multiple PreemptiveTasks.

4.5.4.2 PreemptiveTask
The PreemptiveTask represents an «active» class that is run via a preemptive multitasking
scheduler. It accesses the GuardedResource by invoking the latter’s functions, which in turn
are protected by the Semaphore.

14 I say “relevant functions” because the class may offer some functions that don’t require protection.

192 Chapter 4

4.5.4.3 Semaphore
The Semaphore is a mutual exclusion semaphore class that serializes access to a
GuardedResource. The guarded functions of the GuardedResource invoke the lock()

function of the Semaphore whenever they are called and release()once the service is
complete. Other client threads that attempt to invoke a service when its associated Semaphore

is locked become blocked until the Semaphore is unlocked. The blocking is performed when
the Semaphore signals the StaticPriorotyScheduler that a call attempt was made by the
currently active thread. The mutexID identifies which Mutex is blocking the task. This
element is usually provided by the RTOS. Note this is the same element that appears in the
Static Priority Pattern earlier in this chapter.

4.5.4.4 StaticPriorityScheduler
This object orchestrates the execution of multiple threads based on their priority. In this pattern,
we are focusing on the responsibility (not shown) of this element to block a task if it attempts to
lock an already-locked Semaphore and to unblock all tasks blocked on the mutexID when
this lock is released. This element is usually provided by the RTOS. Note this is the same
element that appears in the Static Priority Pattern earlier in this chapter.

4.5.5 Consequences

This pattern provides a timely access to a resource and at the same time prevents multiple
simultaneous accesses that can result in data corruption and system misbehavior. If the resource
is not locked, then access proceeds without delay. If the resource is currently locked, then the
caller must block until the lock on the resource is released. Naïve use can result in unbounded
priority inversion in the manner described in Figure 4-5. See Section 4.5.7 Related Patterns for
a discussion of an RTOS-supported solution.

4.5.6 Implementation Strategies

The tricky part of implementing the pattern lies in the implementation of the Mutex. Usually,
the RTOS will provide a Semaphore instance, accessible through operations such as:

•	 OSSemaphore OS_create_semaphore()

creates a semaphore and returns a pointer to it.

•	 void OS_destroy_semaphore(OSSemaphore*)

destroys the semaphore pointed at.

•	 void OS_lock_semaphore(OSSemaphore*)

locks the relevant semaphore. If called with an unlocked OSSemaphore, it becomes
locked. If already locked, then it blocks the current task with its internally-stored mutexID.
The scheduler must store the task data including the continuation entry point and stack.

Design Patterns for Embedding Concurrency and Resource Management 193

•	 void OS_release_semaphore(OSSemaphore *)

releases the lock on the relevant semaphore and unblocks all tasks blocked on its
internally-stored MutexID.

Of course, the names and parameters of the services are OS specific.

4.5.7 Related Patterns

The Guarded Call Pattern is used with Static Priority or other preemptive multitasking
environments. It is a less draconian policy than is enforced by the Critical Region Pattern
(above) because it does not interfere with the execution of higher priority tasks that don’t need
access to the resource. It is more responsive than the Queuing Pattern (below) because it
doesn’t need to wait for the resource’s thread to become active to check for the request.

There is one very important class of variants of this pattern that solves the problem of unbounded
priority inversion that uses a concept of priority inheritance. The basic idea is that each resource
has an addition attribute (variable) knows as its priority ceiling, which is equal to the priority of
the highest-priority task that can ever access the resource. The underlying problem with naïve
implementation of the Guarded Call Pattern is that intermediate priority tasks that don’t need the
resource can preempt the low-priority task that currently owns the resource needed by the blocked
high-priority task. There can be any number of such intermediate-priority tasks, leading to
chained blocking of the high priority task. The priority inheritance solution is to elevate the
priority of the low-priority task as soon as the high-priority task attempts to lock the resource
owned by the low-priority task. This can be done by creating a semaphore that implements the
priority inversion. This is the approach taken, for example, by VxWorks™ from Wind River,
which implements a set of mutex semaphore functions such as:

SEM_ID semM;

semM = semMCreate(. . .);

semTake(semM, FLAG);

semGive(semM);

Values for FLAG include WAIT_FOREVER, and – important to this discussion – SEM_
INVERSION_SAFE. When the latter flag value is used, VxWorks’ mutex semaphores
implement priority inheritance.

In Figure 4-5, if the locking mutex is implemented in this way, the following sequence of
events holds:

1.	 Task Z runs and locks Resource R at its nominal priority of 100.
2.	 Task A runs at priority 1, and attempts to lock the mutex guarding R and blocks. At this

point, the priority of Task Z is elevated to that of Task A (i.e., priority 1).

194 Chapter 4

3.	 Task Y becomes ready to run. With a normal naïve mutex, it would run and preempt
Task Z. However, its priority (99) is less than the priority at which Task Z is running so
it remains on the Task Ready queue.

4.	 Task Z completes its use of the Resource R and unlocks it. At this point, the priority of
Task Z is demoted to its nominal priority (100).

5.	 Task A unblocks and now uses the resource and completes within its deadline.
6.	 Task Y now, being the highest ready task, runs.
7.	 Task Y completes, and finally, Task Z is allowed to complete its execution.

You can see in this simple example how priority inheritance prevented the unbounded priority
inversion that a normal counting semaphore would allow.

4.5.8 Example

The example shown in Figure 4-16 is a portion of a flight control system. In it, the ship
KinematicData (position and attitude) are managed as a shared resource for multiple clients.

Figure 4-16: Guarded Call example

Design Patterns for Embedding Concurrency and Resource Management 195

Since the setting and getting of these values is not an atomic process, there is a possibility
of displaying invalid data if, for example, the FlightDataDisplay showFlightData()

function is preempted to update the attitude data by the AttitudeController. The use of
semaphores in the methods ensures that this cannot happen.

The next several code listings (Code Listing 4-19 through Code Listing 4-30) give the code for
the elements of the Guarded Call example in Figure 4-16. The first gives the specification for
the OS calls used for the semaphores. The next four show the code for the complex data types
Position and Attitude, respectively.

Code Listing 4-23 and Code Listing 4-24 give the code for the resource (KinematicData)
that uses the OSSemaphore to guard its operations to set and get that data. The initializer
KinematicData_Init() creates a semaphore via a call to OS_create_semaphore()

while the clean-up function KinematicData_CleanUp() calls OS_destroy_semaphore

() to free up its memory. Its accessor and mutator methods to get and set attitude and
position data all invoke the OS_lock_semaphore(), do their processing, and then invoke
OS_release_semaphore().

The code listings after that show the code for the clients: the FlightDataDisplay,
AttitudeController, and Navigator. These all share the information stored in the
KinematicData object and so must be protected from data corruption.

#ifndef GuardedCallExample_H

#define GuardedCallExample_H

struct Attitude;

struct AttitudeController;

struct FlightDataDisplay;

struct GuardTester;

struct GuardedCallBuilder;

struct KinematicData;

struct Navigator;

struct Position;

/* OS provided types and functions */

struct OSSemaphore;

struct OSSemaphore* OS_create_semaphore(void);

void OS_destroy_semaphore(struct OSSemaphore* sPtr);

void OS_lock_semaphore(struct OSSemaphore* sPtr);

void OS_release_semaphore(struct OSSemaphore* sPtr);

#endif

Code Listing 4-7: GuardedCallExample.h

196 Chapter 4

#ifndef Position_H

#define Position_H

#include "GuardedCallExample.h"

typedef struct Position Position;
struct Position {

double altitude; /*# # attribute altitude */
double latitude; /*# # attribute latitude */
double longitude; /*# # attribute longitude */

};

/* Constructors and destructors:*/

void Position_Init(Position* const me);

void Position_Cleanup(Position* const me);

/* Operations */

double Position_getAltitude(Position* const me);

double Position_getLatitude(Position* const me);

double Position_getLongitude(Position* const me);

void Position_setAltitude(Position* const me, double x);

void Position_setLatitude(Position* const me, double x);

void Position_setLongitude(Position* const me, double x);

Position * Position_Create(void);

void Position_Destroy(Position* const me);

#endif

Code Listing 4-19: Position.h

#include "Position.h"

void Position_Init(Position* const me) {

}

void Position_Cleanup(Position* const me) {

}

double Position_getAltitude(Position* const me) {

return me->altitude;

}

double Position_getLatitude(Position* const me) {

return me->latitude;

}

Design Patterns for Embedding Concurrency and Resource Management 197

double Position_getLongitude(Position* const me) {

return me->longitude;

}

void Position_setAltitude(Position* const me, double x) {
me->altitude = x;

}

void Position_setLatitude(Position* const me, double x) {
me->latitude = x;

}

void Position_setLongitude(Position* const me, double x) {
me->longitude = x;

}

Position * Position_Create(void) {
Position* me = (Position *) malloc(sizeof(Position));
if(me!=NULL) {

Position_Init(me);

}

return me;

}

void Position_Destroy(Position* const me) {

if(me!=NULL) {

Position_Cleanup(me);

}

free(me);

}

Code Listing 4-8: Position.c

#ifndef Attitude_H

#define Attitude_H

#include "GuardedCallExample.h"

typedef struct Attitude Attitude;
struct Attitude {

double pitch; /*## attribute pitch */

double roll; /*## attribute roll */

double yaw; /*## attribute yaw */

};

/* Constructors and destructors:*/

void Attitude_Init(Attitude* const me);

void Attitude_Cleanup(Attitude* const me);

198 Chapter 4

/* Operations */

double Attitude_getPitch(Attitude* const me);

double Attitude_getRoll(Attitude* const me);

double Attitude_getYaw(Attitude* const me);

void Attitude_setPitch(Attitude* const me, double x);

void Attitude_setRoll(Attitude* const me, double x);

void Attitude_setYaw(Attitude* const me, double x);

Attitude * Attitude_Create(void);

void Attitude_Destroy(Attitude* const me);

#endif

Code Listing 4-9: Attitude.h

#include "Attitude.h"

void Attitude_Init(Attitude* const me) {

}

void Attitude_Cleanup(Attitude* const me) {

}

double Attitude_getPitch(Attitude* const me) {

return me->pitch;

}

double Attitude_getRoll(Attitude* const me) {

return me->roll;

}

double Attitude_getYaw(Attitude* const me) {

return me->yaw;

}

void Attitude_setPitch(Attitude* const me, double x) {
me->pitch = x;

}

void Attitude_setRoll(Attitude* const me, double x) {
me->roll = x;

}

void Attitude_setYaw(Attitude* const me, double x) {
me->yaw = x;

}

Design Patterns for Embedding Concurrency and Resource Management 199

Attitude * Attitude_Create(void) {

Attitude* me = (Attitude *) malloc(sizeof(Attitude));

if(me!=NULL)

{

Attitude_Init(me);

}

return me;

}

void Attitude_Destroy(Attitude* const me) {

if(me!=NULL)

{

Attitude_Cleanup(me);

}

free(me);

}

Code Listing 4-10: Attitude.c

#ifndef KinematicData_H

#define KinematicData_H

#include "GuardedCallExample.h"

#include "Attitude.h"

#include "OSSemaphore.h"

#include "Position.h"

typedef struct KinematicData KinematicData;
struct KinematicData {

struct Attitude attitude;

struct Position position;

OSSemaphore* sema; /*## mutex semaphore */

};

/* Constructors and destructors:*/

void KinematicData_Init(KinematicData* const me);

void KinematicData_Cleanup(KinematicData* const me);

/* Operations */

Attitude KinematicData_getAttitude(KinematicData* const me);
struct Position KinematicData_getPosition(KinematicData* const me);

void KinematicData_setAttitude(KinematicData* const me, Attitude a);

void KinematicData_setPosition(KinematicData* const me, Position p);

200 Chapter 4

KinematicData * KinematicData_Create(void);

void KinematicData_Destroy(KinematicData* const me);

#endif

Code Listing 4-11: KinematicData.h

#include "KinematicData.h"

void KinematicData_Init(KinematicData* const me) {

Attitude_Init(&(me->attitude));

Position_Init(&(me->position));

me->sema = OS_create_semaphore();

}

void KinematicData_Cleanup(KinematicData* const me) {

OS_destroy_semaphore(me->sema);

}

struct Position KinematicData_getPosition(KinematicData* const me) {
Position p;

/* engage the lock */

OS_lock_semaphore(me->sema);

p = me->position;

/* release the lock */

OS_release_semaphore(me->sema);

return p;

}

void KinematicData_setAttitude(KinematicData* const me, Attitude a) {
/* engage the lock */
OS_lock_semaphore(me->sema);

me->attitude = a;

/* release the lock */

OS_release_semaphore(me->sema);

}

void KinematicData_setPosition(KinematicData* const me, Position p) {
/* engage the lock */
OS_lock_semaphore(me->sema);

Design Patterns for Embedding Concurrency and Resource Management 201

me->position = p;

/* release the lock */

OS_release_semaphore(me->sema);

}

KinematicData * KinematicData_Create(void) {

KinematicData* me = (KinematicData *)

malloc(sizeof(KinematicData));

if(me!=NULL) {

KinematicData_Init(me);

}

return me;

}

void KinematicData_Destroy(KinematicData* const me) {

if(me!=NULL) {

KinematicData_Cleanup(me);

}

free(me);

}
Attitude KinematicData_getAttitude(KinematicData* const me) {

Attitude a;

/* engage the lock */

OS_lock_semaphore(me->sema);

a = me->attitude;

/* release the lock */

OS_release_semaphore(me->sema);

return a;

}

Code Listing 4-24: KinematicData.c

#ifndef AttitudeController_H

#define AttitudeController_H

#include "GuardedCallExample.h"

#include "Attitude.h"

struct KinematicData;

typedef struct AttitudeController AttitudeController;

struct AttitudeController {

struct Attitude ownShipAttitude;

202 Chapter 4

struct KinematicData* itsKinematicData;

};

/* Constructors and destructors:*/

void AttitudeController_Init(AttitudeController* const me);

void AttitudeController_Cleanup(AttitudeController* const me);

/* Operations */

void AttitudeController_manageAttitude(AttitudeController* const me);

struct KinematicData*

AttitudeController_getItsKinematicData(const AttitudeController*
const me);

void AttitudeController_setItsKinematicData(AttitudeController*

const me, struct KinematicData* p_KinematicData);

AttitudeController * AttitudeController_Create(void);

void AttitudeController_Destroy(AttitudeController* const me);

#endif

Code Listing 4-12: AttitudeController.h

#include "AttitudeController.h"

#include "KinematicData.h"

static void cleanUpRelations(AttitudeController* const me);

void AttitudeController_Init(AttitudeController* const me) {

Attitude_Init(&(me->ownShipAttitude));

me->itsKinematicData = NULL;

}

void AttitudeController_Cleanup(AttitudeController* const me) {

cleanUpRelations(me);

}

void AttitudeController_manageAttitude(AttitudeController* const me) {
KinematicData_setAttitude(me->itsKinematicData, me->ownShipAttitude);

}

struct KinematicData*

AttitudeController_getItsKinematicData(const AttitudeController* const me) {

Design Patterns for Embedding Concurrency and Resource Management 203

return (struct KinematicData*)me->itsKinematicData;

}

void AttitudeController_setItsKinematicData(AttitudeController*
const me, struct KinematicData* p_KinematicData) {

me->itsKinematicData = p_KinematicData;
}

AttitudeController * AttitudeController_Create(void) {

AttitudeController* me = (AttitudeController *)

malloc(sizeof(AttitudeController));

if(me!=NULL) {

AttitudeController_Init(me);

}

return me;

}

void AttitudeController_Destroy(AttitudeController* const me) {
if(me!=NULL) {

AttitudeController_Cleanup(me);

}

free(me);

}

static void cleanUpRelations(AttitudeController* const me) {
if(me->itsKinematicData != NULL) {

me->itsKinematicData = NULL;
}

}

Code Listing 4-13: AttitudeController.c

#ifndef Navigator_H

#define Navigator_H

#include "GuardedCallExample.h"

#include "Position.h"

struct KinematicData;

typedef struct Navigator Navigator;
struct Navigator {

struct Position ownShipPosition;

struct KinematicData* itsKinematicData;

};

/* Constructors and destructors:*/

void Navigator_Init(Navigator* const me);

void Navigator_Cleanup(Navigator* const me);

204 Chapter 4

/* Operations */

void Navigator_updatePosition(Navigator* const me);

struct KinematicData* Navigator_getItsKinematicData(const Navigator* const me);

void Navigator_setItsKinematicData(Navigator* const me, struct

KinematicData* p_KinematicData);

Navigator * Navigator_Create(void);

void Navigator_Destroy(Navigator* const me);

#endif

Code Listing 4-14: Navigator.h

#include "Navigator.h"

#include "KinematicData.h"

static void cleanUpRelations(Navigator* const me);

void Navigator_Init(Navigator* const me) {

Position_Init(&(me->ownShipPosition));

me->itsKinematicData = NULL;

}

void Navigator_Cleanup(Navigator* const me) {

cleanUpRelations(me);

}

void Navigator_updatePosition(Navigator* const me) {

KinematicData_setPosition(me->itsKinematicData, me->ownShipPosition);

}

struct KinematicData* Navigator_getItsKinematicData(const

Navigator* const me) {

return (struct KinematicData*)me->itsKinematicData;

}

void Navigator_setItsKinematicData(Navigator* const me, struct

KinematicData* p_KinematicData) {

me->itsKinematicData = p_KinematicData;

}

Navigator * Navigator_Create(void) {

Navigator* me = (Navigator *) malloc(sizeof(Navigator));

if(me!=NULL) {

Navigator_Init(me);

}

Design Patterns for Embedding Concurrency and Resource Management 205

return me;

}

void Navigator_Destroy(Navigator* const me) {

if(me!=NULL) {

Navigator_Cleanup(me);

}

free(me);

}

static void cleanUpRelations(Navigator* const me) {

if(me->itsKinematicData != NULL) {

me->itsKinematicData = NULL;

}

}

Code Listing 4-15: Navigator.c

#ifndef FlightDataDisplay_H

#define FlightDataDisplay_H

#include "GuardedCallExample.h"
struct KinematicData;

typedef struct FlightDataDisplay FlightDataDisplay;
struct FlightDataDisplay {

struct KinematicData* itsKinematicData;

};

/* Constructors and destructors:*/
void FlightDataDisplay_Init(FlightDataDisplay* const me);
void FlightDataDisplay_Cleanup(FlightDataDisplay* const me);

/* Operations */

void FlightDataDisplay_showFlightData(FlightDataDisplay* const me);

struct KinematicData* FlightDataDisplay_getItsKinematicData(const
FlightDataDisplay* const me);

void FlightDataDisplay_setItsKinematicData(FlightDataDisplay*
const me, struct KinematicData* p_KinematicData);

FlightDataDisplay * FlightDataDisplay_Create(void);

void FlightDataDisplay_Destroy(FlightDataDisplay* const me);

#endif

Code Listing 4-16: FlightDataDisplay.h

206 Chapter 4

#include "FlightDataDisplay.h"
#include "KinematicData.h"
#include <stdio.h>

static void cleanUpRelations(FlightDataDisplay* const me);

void FlightDataDisplay_Init(FlightDataDisplay* const me) {
me->itsKinematicData = NULL;

}

void FlightDataDisplay_Cleanup(FlightDataDisplay* const me) {
cleanUpRelations(me);

}

void FlightDataDisplay_showFlightData(FlightDataDisplay* const me) {
Attitude a;
Position p;
a = KinematicData_getAttitude(me->itsKinematicData);
p = KinematicData_getPosition(me->itsKinematicData);
printf("Roll, pitch, yaw = %f, %f, %f \n", a.roll, a.pitch, a.yaw);
printf("Lat, Long, Altitude = %f, %f, %f\n", p.latitude, p.longitude, p.altitude);

}

struct KinematicData* FlightDataDisplay_getItsKinematicData(const FlightDataDis
play* const me) {

return (struct KinematicData*)me->itsKinematicData;
}

void FlightDataDisplay_setItsKinematicData(FlightDataDisplay* const me, struct Kine
maticData* p_KinematicData) {

me->itsKinematicData = p_KinematicData;
}

FlightDataDisplay * FlightDataDisplay_Create(void) {
FlightDataDisplay* me = (FlightDataDisplay *) malloc(sizeof

(FlightDataDisplay));
if(me!=NULL) {
FlightDataDisplay_Init(me);
}
return me;

}

void FlightDataDisplay_Destroy(FlightDataDisplay* const me) {
if(me!=NULL) {
FlightDataDisplay_Cleanup(me);
}
free(me);

}

Design Patterns for Embedding Concurrency and Resource Management 207

static void cleanUpRelations(FlightDataDisplay* const me) {
if(me->itsKinematicData != NULL) {
me->itsKinematicData = NULL;
}

}

Code Listing 4-30: FlightDataDisplay.c

4.6 Queuing Pattern
The Queuing Pattern is the most common implementation of task asynchronous communica
tion. It provides a simple means of communication between tasks that are uncoupled in
time. The Queuing Pattern accomplishes this communication by storing messages in a queue,
a nominally first-in-first-out data structure. The sender deposits a message in the queue and
some time later, the receiver withdraws the message from the queue. It also provides a
simple means of serializing access to a shared resource. The access messages are queued and
handled at a later time and this avoids the mutual exclusion problem common to sharing
resources.

4.6.1 Abstract

The Message Queuing Pattern uses asynchronous communications, implemented via queued
messages, to synchronize and share information among tasks. This approach has the advantage
of simplicity and does not experience mutual exclusion problems because no resource is shared
by reference. Any information shared among threads is passed by value to the separate thread.
While this limits the complexity of the collaboration among the threads, this approach in its
pure form is immune to the standard resource corruption problems that plague concurrent
systems that share information passed by reference. In passed by value sharing, a copy of the
information is made and sent to the receiving thread for processing. The receiving thread fully
owns the data it receives and so may modify them freely without concern for corrupting data
due to multiple writers or due to sharing them among a writer and multiple readers. A downside
of the pattern is that the message isn’t processed immediately after the sender posts it; the
process waits until the receiver task runs and can process the waiting messages.

4.6.2 Problem

In multithreaded systems, tasks must synchronize and share information with others. Two
primary things must be accomplished. First, the tasks must synchronize to permit sharing of the
information. Secondly, the information must be shared in such a way that there is no chance of
corruption or race conditions. This pattern addresses such task interaction.

208 Chapter 4

Figure 4-17: Queuing Pattern

4.6.3 Pattern Structure

The Queuing Pattern structure is shown in Figure 4-17. The QUEUE_SIZE declaration deter
mines the maximum number of elements that the queue can retain. Care must be taken to ensure
that this is large enough to handle the worst-case situation for your system usage, while not
being so large as to waste memory.

4.6.4 Collaboration Roles

This section describes the roles for this pattern.

4.6.4.1 Message
The Message class is an abstraction of a message of relevance between QTasks. It can be
anything from a simple data value to an elaborate datagram structure such as used in TCP/IP
messaging.

4.6.4.2 MessageQueue
The MessageQueue is the storage of information being exchanged between QTasks.
The MessageQueue can store up to a maximum of QUEUE_SIZE message elements. The
MessageQueue provides the following methods:

• int MessageQueue_getNextIndex(MessageQueue* me, int index)

A private (static) function that uses modulo arithmetic to compute the next valid index
value.

Design Patterns for Embedding Concurrency and Resource Management 209

•	 int MessageQueue_insert(MessageQueue* me, Message m)

A public function that, if the MessageQueue isn’t full, inserts a Message into the queue at
the head position and updates the head index. It returns 0 if the insert succeeds and 1 if the
MessageQueue was full.

•	 Message* MessageQueue_remove(MessageQueue* me)

A public function that, if the MessageQueue isn’t empty, removes the oldest message,
creates a new heap variable to hold the data, updates the tail index, and returns that
pointer to the caller. It returns a pointer to a Message if successful and a NULL pointer
if not.

•	 unsigned char MessageQueue_isFull(MessageQueue* me)

A private function that returns 1 if the MessageQueue is full and 0 otherwise.

•	 unsigned char MessageQueue_isEmpty(MessageQueue* me)

A private function that returns 1 if the MessageQueue is empty and 1 otherwise.

4.6.4.3 Mutex

The Mutex is a mutual exclusion semaphore object that serializes access to a MessageQueue.
The guarded functions of the MessageQueue invoke the lock() function of the Mutex

whenever they are called and release() once the service is complete. Other client threads
that attempt to invoke a service when its associated Mutex is locked become blocked until
the Mutex is unlocked. This element is usually provided by the RTOS. Note this is the
same element that appears in the Static Priority Pattern earlier in this chapter.

4.6.4.4 Qtask
The QTask class is a client of the MessageQueue and invokes either the insert() or
remove() functions to access the data held there.

4.6.5 Consequences

The Queuing Pattern provides good serialization of access to the data as they are passed
among tasks. The use of the mutex ensures that the MessageQueue itself isn’t corrupted by
simultaneous access to the MessageQueue’s services. The reception of the data is less timely
than the Guarded Call Pattern since the Queuing Pattern implements asynchronous
communication.

The number of elements held by the queue can be quite large; this is useful as the products of
the elements run in a “bursty” fashion, allowing for the consumer of the elements to catch up
later in time. Poorly sized queues can lead to data loss (if too small) or wasted memory (if too
large). Very small queues (that can hold one or two elements) can be used for simple
asynchronous data exchange when the problem of data loss isn’t present.

210 Chapter 4

4.6.6 Implementation Strategies

The simplest implementation of a queue is as an array of message elements. This has the
advantage of simplicity but lacks the flexibility of a linked list.

Queues are fairly simple to implement but there are many possible variants. Sometimes some
messages are more urgent or important than others and should be processed before waiting for
lower priority messages. The MessageQueue can be modified to implement priority by adding
either multiple buffers (one for each priority) or by inserting the element in the queue on the
basis of the message priority (although this can increase the timing necessary for an element
insertion and deletion). In this case, the message should have a priority attribute to enable the
MessageQueue to properly insert and remove the element.

In complex systems, it may not be feasible to predict an optimal queue size. In such cases,
extensible queues can be implemented. When the MessageQueue is full, more memory is
allocated. A linked list implementation of the MessageQueue is more appropriate for an
extensible queue. It may be difficult to determine under what circumstances it is appropriate to
shrink the queue and release unused memory.

It sometimes happens that the potential number of elements exceeds memory capacity. In this case, a
cached queue can be created; in such a queue, there are essentially three storage locations; a local
memory newest data buffer, a local memory oldest data buffer, and a file that holds data of
intermediate age. When the local new data buffer becomes full, it is emptied to the file system. When
the local old data buffer becomes empty, the data from the file system are loaded into the local old
data buffer and removed from the disk (or copied from the new data buffer if the file is empty). This
allows storage of potentially huge volumes of data, but caching the data can be time intensive.

4.6.7 Related Patterns

The Queuing Pattern serializes access to data by queuing data or commands, allowing the recipient
to handle them one at a time. It does this asynchronously, so the time between the sending of the
message and its processing is uncoupled. This may not meet the performance needs of the system.
The Guarded Call Pattern also serializes access but does so synchronously, so that data and
command transfers generally happen closer together in time. However, the Guarded Call Pattern
can lead to unbounded priority inversion if not used carefully. In addition, if the receiver isn’t
ready to receive the message from the sender, the sender must block or take another action.

4.6.8 Example

Figure 4-18 shows an example of producers and consumers that share data via a queue. The
key element for this pattern is the GasDataQueue. It implements a small 10-element queue of
GasData. GasData is a struct that contains an enumerated GAS_TYPE (with enumerated values

Design Patterns for Embedding Concurrency and Resource Management 211

Figure 4-18: Queuing Example

O2_GAS, N2_GAS, HE_GAS, and UNKNOWN_GAS), the gas concentration (a double), and
the flow rate in ccs per minute (int). Code Listing 4-31 gives the #defines and general
declarations. Code Listing 4-32 and Code Listing 4-33 give the code for the GasData struct.

#ifndef QueuingExample_H

#define QueuingExample_H

struct GasController;

struct GasData;

struct GasDataQueue;

struct GasDisplay;

212 Chapter 4

struct GasProcessingThread;

struct HeSensor;

struct N2Sensor;

struct O2Sensor;

struct OSSemaphore;

struct SensorThread;

typedef enum GAS_TYPE {

O2_GAS,

N2_GAS,

HE_GAS,

UNKNOWN_GAS

} GAS_TYPE;

/* define the size of the queue */

#define GAS_QUEUE_SIZE (10)

/* OS semaphore services */

struct OSSemaphore* OS_create_semaphore(void);

void OS_destroy_semaphore(struct OSSemaphore* sPtr);

void OS_lock_semaphore(struct OSSemaphore* sPtr);

void OS_release_semaphore(struct OSSemaphore* sPtr);

#endif

Code Listing 4-17: GasDataExample.h

#ifndef GasData_H

#define GasData_H

#include "QueuingExample.h"

typedef struct GasData GasData;
struct GasData {

double conc;

unsigned int flowInCCPerMin;

GAS_TYPE gType;

};

/* Constructors and destructors:*/

void GasData_Init(GasData* const me);

void GasData_Cleanup(GasData* const me);

GasData * GasData_Create(void);

void GasData_Destroy(GasData* const me);

#endif

Code Listing 4-32: GasData.h

Design Patterns for Embedding Concurrency and Resource Management 213

#include "GasData.h"

void GasData_Init(GasData* const me) {

me->conc = 0.0;

me->flowInCCPerMin = 0;

me->gType = UNKNOWN_GAS;

}

void GasData_Cleanup(GasData* const me) {

}

GasData * GasData_Create(void) {

GasData* me = (GasData *) malloc(sizeof(GasData));

if(me!=NULL) {

GasData_Init(me);

}

return me;

}

void GasData_Destroy(GasData* const me) {

if(me!=NULL) {

GasData_Cleanup(me);

}

free(me);

}

Code Listing 4-33: GasData.c

The GasDataQueue is the center of the pattern. Its two operations insert() and remove()
enqueue new data and dequeue oldest data, respectively. The insert() function returns TRUE if it
succeeded and FALSE otherwise. The remove() function returns a pointer to a GasData

instance for which the client is responsible for deleting. If the remove() function fails, it returns
a NULL pointer.

The class also includes some private (static) helper functions such as getNextIndex() which
computes the next index using modulo arithmetic to wrap around the top of the queue,
isEmpty(), which returns TRUE if the queue has no elements, and isFull(), which returns
TRUE if there is no space to hold additional elements.

Code Listing 4-34 and Code Listing 4-35 give the C code for the GasDataQueue.

#ifndef GasDataQueue_H

#define GasDataQueue_H

#include "QueuingExample.h"

#include "GasData.h"

214 Chapter 4

#include "OSSemaphore.h"

typedef struct GasDataQueue GasDataQueue;
struct GasDataQueue {

int head;

OSSemaphore * sema;

int size;

int tail;

struct GasData itsGasData[GAS_QUEUE_SIZE];

};

/* Constructors and destructors:*/

void GasDataQueue_Init(GasDataQueue* const me);

void GasDataQueue_Cleanup(GasDataQueue* const me);

/* Operations */

int GasDataQueue_insert(GasDataQueue* const me, GasData g);

GasData * GasDataQueue_remove(GasDataQueue* const me);

int GasDataQueue_getItsGasData(const GasDataQueue* const me);

GasDataQueue * GasDataQueue_Create(void);

void GasDataQueue_Destroy(GasDataQueue* const me);

#endif

Code Listing 4-34: GasDataQueue.h

#include "GasDataQueue.h"

#include <stdio.h>

/* private (static) methods */

static void cleanUpRelations(GasDataQueue* const me);

static int getNextIndex(GasDataQueue* const me, int index);

static unsigned char isEmpty(GasDataQueue* const me);

static unsigned char isFull(GasDataQueue* const me);

static void initRelations(GasDataQueue* const me);

void GasDataQueue_Init(GasDataQueue* const me) {

me->head = 0;

me->sema = NULL;

me->size = 0;

me->tail = 0;

initRelations(me);

Design Patterns for Embedding Concurrency and Resource Management 215

me->sema = OS_create_semaphore();
}

void GasDataQueue_Cleanup(GasDataQueue* const me) {
OS_destroy_semaphore(me->sema);
cleanUpRelations(me);

}

/*
Insert puts new gas data elements into the queue
if possible. It returns 1 if successful, 0 otherwise.

*/
int GasDataQueue_insert(GasDataQueue* const me, GasData g) {

OS_lock_semaphore(me->sema);
if (!isFull(me)) {

me->itsGasData[me->head] = g;

me->head = getNextIndex(me, me->head);

++me->size;

/* instrumentation */

/* print stuff out, just to visualize the insertions */

switch (g.gType) {

case O2_GAS:

printf("+++ Oxygen ");

break;

case N2_GAS:

printf("+++ Nitrogen ");

break;

case HE_GAS:

printf("+++ Helium ");

break;

default:

printf("UNKNWON ");

break;

};

printf(" at conc %f, flow %d\n",g.conc,g.flowInCCPerMin);

printf(" Number of elements queued %d, head = %d, tail = %d\n",

me->size, me->head, me->tail);

/* end instrumentation */

OS_release_semaphore(me->sema);
return 1;

}

else { /* return error indication */

OS_release_semaphore(me->sema);

return 0;

}

}
/*

remove creates a new element on the heap, copies

216 Chapter 4

the contents of the oldest data into it, and

returns the pointer. Returns NULL if the queue

is empty

*/
GasData * GasDataQueue_remove(GasDataQueue* const me) {

GasData* gPtr;

OS_lock_semaphore(me->sema);
if (!isEmpty(me)) {

gPtr = (GasData*)malloc(sizeof(GasData));
gPtr->gType = me->itsGasData[me->tail].gType;
gPtr->conc = me->itsGasData[me->tail].conc;
gPtr->flowInCCPerMin = me->itsGasData[me->tail].flowInCCPerMin;
me->tail = getNextIndex(me, me->tail);
–me->size;
/* instrumentation */
switch (gPtr->gType) {

case O2_GAS:

printf("— Oxygen ");

break;

case N2_GAS:

printf("— Nitrogen ");

break;

case HE_GAS:

printf("— Helium ");

break;

default:

printf("— UNKNWON ");

break;

};

printf(" at conc %f, flow %d\n",gPtr->conc,gPtr->flowInCCPerMin);

printf(" Number of elements queued %d, head = %d, tail = %d\n",

me->size, me->head, me->tail);

/* end instrumentation */

OS_release_semaphore(me->sema);

return gPtr;

}

else { /* if empty return NULL ptr */

OS_release_semaphore(me->sema);

return NULL;

}

}

static int getNextIndex(GasDataQueue* const me, int index) {
/* this operation computes the next index from the
first using modulo arithmetic
*/

return (index+1) % QUEUE_SIZE;
}

Design Patterns for Embedding Concurrency and Resource Management 217

static unsigned char isEmpty(GasDataQueue* const me) {

return (me->size == 0);

}

static unsigned char isFull(GasDataQueue* const me) {

return (me->size == GAS_QUEUE_SIZE);

}

int GasDataQueue_getItsGasData(const GasDataQueue* const me) {

int iter = 0;

return iter;

}

GasDataQueue * GasDataQueue_Create(void) {

GasDataQueue* me = (GasDataQueue *)

malloc(sizeof(GasDataQueue));

if(me!=NULL) {

GasDataQueue_Init(me);

}

return me;

}

void GasDataQueue_Destroy(GasDataQueue* const me) {

if(me!=NULL) {

GasDataQueue_Cleanup(me);

}

free(me);

}

static void initRelations(GasDataQueue* const me) {

int iter = 0;

while (iter < GAS_QUEUE_SIZE){

GasData_Init(&((me->itsGasData)[iter]));

iter++;

}

}

static void cleanUpRelations(GasDataQueue* const me) {

int iter = 0;

while (iter < GAS_QUEUE_SIZE){

GasData_Cleanup(&((me->itsGasData)[iter]));

iter++;

}

}

Code Listing 4-35: GasDataQueue.c

In the example (Figure 4-18) two threads run clients. The SensorThread owns three clients
itself, an O2Sensor, N2Sensor, and HeSensor. When this thread runs the main function of

218 Chapter 4

this thread (SensorThread_updateData()), it calls the getXXData() function of each to
produce the data, and then marshalls the data up into GasData structs and sends them off. The
relevant code (less the task initiation and supporting functions) for the SensorThread is given
in Code Listing 4-36 and Code Listing 4-37.

/* … initial declaratons stuff above … */

typedef struct SensorThread SensorThread;
struct SensorThread {

struct GasDataQueue* itsGasDataQueue;

struct HeSensor itsHeSensor;

struct N2Sensor itsN2Sensor;

struct O2Sensor itsO2Sensor;

};

/* Operations */

void SensorThread_updateData(SensorThread* const me);

/* … other operations declared too … */

#endif

Code Listing 4-36: SensorThread.h

/*

updateData runs every period of the sensor thread

and calls the getXXData() function of each of

its sensors, then uses a random number generator

to decide which data should be published to the

GasDataQueue.

*/
void SensorThread_updateData(SensorThread* const me) {

unsigned char success;

GasData g;

GasData_Init(&g);

O2Sensor_getO2Data(&(me->itsO2Sensor));

N2Sensor_getN2Data(&(me->itsN2Sensor));

HeSensor_getHeData(&(me->itsHeSensor));

if (rand() > RAND_MAX / 3) {

g.gType = HE_GAS;

g.conc = me->itsHeSensor.conc;

g.flowInCCPerMin = me->itsHeSensor.flow;

Design Patterns for Embedding Concurrency and Resource Management 219

success = GasDataQueue_insert(me->itsGasDataQueue, g);

if (!success)

printf("Helium Gas Data queue insertion failed!\n");

};

if (rand() > RAND_MAX / 3) {

g.gType = N2_GAS;

g.conc = me->itsN2Sensor.conc;

g.flowInCCPerMin = me->itsN2Sensor.flow;

success = GasDataQueue_insert(me->itsGasDataQueue, g);

if (!success)

printf("Nitrogen Gas Data queue insertion failed!\n");

};

if (rand() > RAND_MAX / 3) {

g.gType = O2_GAS;

g.conc = me->itsO2Sensor.conc;

g.flowInCCPerMin = me->itsO2Sensor.flow;

success = GasDataQueue_insert(me->itsGasDataQueue, g);

if (!success)

printf("Oxygen Gas Data queue insertion failed! \n");

}

}

Code Listing 4-37: updateData function of SensorThread.c

The sensors in this example are pretty simple – they just augment their values over time but
they show that they just produce data; the SensorThread_updateData() function is
responsible for pushing the data out to the queue. Code Listing 4-38 and Code Listing 4-39
show the code for one of these sensors.

#ifndef O2Sensor_H

#define O2Sensor_H

#include "QueuingExample.h"

typedef struct O2Sensor O2Sensor;
struct O2Sensor {

double conc;

unsigned int flow;

};

/* Constructors and destructors:*/

void O2Sensor_Init(O2Sensor* const me);

void O2Sensor_Cleanup(O2Sensor* const me);

220 Chapter 4

/* Operations */

void O2Sensor_getO2Data(O2Sensor* const me);

O2Sensor * O2Sensor_Create(void);

void O2Sensor_Destroy(O2Sensor* const me);

#endif

Code Listing 4-38: O2Sensor.h

#include "O2Sensor.h"

#include <stdlib.h>

#include <stdio.h>

void O2Sensor_Init(O2Sensor* const me) {

me->conc = 0.0;

me->flow = 0;

}

void O2Sensor_Cleanup(O2Sensor* const me) {

}

/*

getO2Data() is where the sensor class would

actually acquire the data. Here it just

augments it.

*/
void O2Sensor_getO2Data(O2Sensor* const me) {

me->conc += 20;

me->flow += 25;

}

O2Sensor * O2Sensor_Create(void) {
O2Sensor* me = (O2Sensor *) malloc(sizeof(O2Sensor));
if(me!=NULL) {

O2Sensor_Init(me);

}

return me;

}

void O2Sensor_Destroy(O2Sensor* const me) {

if(me!=NULL) {

O2Sensor_Cleanup(me);

}

free(me);

}

Code Listing 4-39: O2Sensor.c

Design Patterns for Embedding Concurrency and Resource Management 221

On the consumer side, the GasProcessingThread_processData() runs periodically and
pulls data out. If there are data available, it calls the function GasController_handleGasData

() of its nested instance of GasController. This function just prints out the data (by calling the
GasDisplay_printGasData() function) but one can imagine that it might find more interesting
things to do with the data, such as maintain a constant gas delivery of appropriate concentrations.
Code Listing 4-40 through Code Listing 4-43 show the code for these two elements.

#ifndef GasController_H

#define GasController_H

#include "QueuingExample.h"

#include "GasData.h"

struct GasDisplay;

typedef struct GasController GasController;

struct GasController {

struct GasDisplay* itsGasDisplay;

};

/* Constructors and destructors:*/

void GasController_Init(GasController* const me);

void GasController_Cleanup(GasController* const me);

/* Operations */

void GasController_handleGasData(GasController* const me, GasData

* gPtr);

struct GasDisplay* GasController_getItsGasDisplay(const

GasController* const me);

void GasController_setItsGasDisplay(GasController* const me,

struct GasDisplay* p_GasDisplay);

GasController * GasController_Create(void);

void GasController_Destroy(GasController* const me);

#endif

Code Listing 4-40: GasController.h

#include "GasController.h"

#include "GasDisplay.h"

#include <stdio.h>

static void cleanUpRelations(GasController* const me);

222 Chapter 4

void GasController_Init(GasController* const me) {

me->itsGasDisplay = NULL;

}

void GasController_Cleanup(GasController* const me) {

cleanUpRelations(me);

}

void GasController_handleGasData(GasController* const me, GasData * gPtr) {
if (gPtr) {

GasDisplay_printGasData(me->itsGasDisplay, gPtr->gType, gPtr->conc,
gPtr->flowInCCPerMin);
free(gPtr);
};

}

struct GasDisplay* GasController_getItsGasDisplay(const GasController* const me) {
return (struct GasDisplay*)me->itsGasDisplay;

}
void GasController_setItsGasDisplay(GasController* const me, struct GasDisplay*
p_GasDisplay) {

me->itsGasDisplay = p_GasDisplay;

}

GasController * GasController_Create(void) {

GasController* me = (GasController *)

malloc(sizeof(GasController));

if(me!=NULL)

{

GasController_Init(me);

}

return me;

}

void GasController_Destroy(GasController* const me) {

if(me!=NULL)

{

GasController_Cleanup(me);

}

free(me);

}

static void cleanUpRelations(GasController* const me) {

if(me->itsGasDisplay != NULL)

{

me->itsGasDisplay = NULL;

}

}

Code Listing 4-18: GasController.c

Design Patterns for Embedding Concurrency and Resource Management 223

#include "QueuingExample.h"

#include "GasData.h"

typedef struct GasDisplay GasDisplay;

struct GasDisplay {

int screenWidth;

};

/* Constructors and destructors:*/

void GasDisplay_Init(GasDisplay* const me);

void GasDisplay_Cleanup(GasDisplay* const me);

/* Operations */

void GasDisplay_printGasData(GasDisplay* const me, const GAS_TYPE gasType, double

gas_conc, unsigned int gas_flow);

GasDisplay * GasDisplay_Create(void);

void GasDisplay_Destroy(GasDisplay* const me);

#endif

Code Listing 4-19: GasDisplay.h

#include "GasDisplay.h"

#include <stdio.h>

void GasDisplay_Init(GasDisplay* const me) {

me->screenWidth = 80;

}

void GasDisplay_Cleanup(GasDisplay* const me) {

}

void GasDisplay_printGasData(GasDisplay* const me, const GAS_TYPE gasType, double
gas_conc, unsigned int gas_flow) {

printf("\n");

switch (gasType) {

case O2_GAS:

printf("Oxygen ");

break;

case N2_GAS:

printf("Nitrogen ");

break;

case HE_GAS:

224 Chapter 4

printf("Helium ");

break;

default:

printf("UNKNWON ");

break;

};

printf("Conc %f, Flow in CC/Min %d\n", gas_conc, gas_flow);

printf("\n");

}

GasDisplay * GasDisplay_Create(void) {

GasDisplay* me = (GasDisplay *) malloc(sizeof(GasDisplay));

if(me!=NULL) {

GasDisplay_Init(me);

}

return me;

}

void GasDisplay_Destroy(GasDisplay* const me) {

if(me!=NULL) {

GasDisplay_Cleanup(me);

}

free(me);

}

Code Listing 4-43: GasDisplay.c

Figure 4-19 shows a four-second run of the example in which the GasProcessingThread

runs first at a period of 1000 ms and the SensorThread runs second at a period of 500 ms and
a queue size of 10. You can see that even though each of the three gas sensors only has a
1/3 chance of producing data during the interval, data are put in faster than they are removed
and the queue eventually fills up. The insert operation is instrumented with a printf()

statement to show when data are inserted. The GasController’s handleGasData() is
invoked every period of the GasProcessingThread and it calls the GasDisplay’s

printGasData() function.

4.7 Rendezvous Pattern
Tasks must synchronize in various ways. The Queuing and Guarded Call Patterns provide
mechanisms when the synchronization occurs around a simple function call, sharing a single
resource, or passing data. But what if the conditions required for synchronization are more
complex? The Rendezvous Pattern reifies the strategy as an object itself and therefore supports
even those most complex needs for task synchronization.

Design Patterns for Embedding Concurrency and Resource Management 225

Figure 4-19: Sample run of the Queuing example

4.7.1 Abstract

A precondition is something that is specified to be true prior to an action or activity. A precondition
is a type of constraint that is usually generative, that is, it can be used to generate code either to
force the precondition to be true or to check that a precondition is true.

The Rendezvous Pattern is concerned with modeling the preconditions for synchronization or
rendezvous of threads as a separate explicit object with its own data and functions. It is a
general pattern and easy to apply to ensure that arbitrarily complex sets of preconditions can
be met at run-time. The basic behavioral model is that as each thread becomes ready to
rendezvous, it registers with the Rendezvous class, and then blocks until the Rendezvous

226 Chapter 4

class releases it to run. Once the set of preconditions is met, then the registered tasks are
released to run using whatever scheduling policy is currently in force.

4.7.2 Problem

The Rendezvous Pattern solves the problems when a set of tasks must synchronize in a
complex fashion.

4.7.3 Pattern Structure

Figure 4-20 shows the structure of the Rendezvous Pattern. Its structural simplicity belies its
useful to manage complex task interactions.

Figure 4-20: Rendezvous Pattern

4.7.4 Collaboration Roles

This section describes the roles for this pattern.

4.7.4.1 Rendezvous
The Rendezvous class manages the synchronization. It does this through its two primary functions:

•	 void reset(void)
This function resets the synchronization criteria back to its initial condition.

Design Patterns for Embedding Concurrency and Resource Management 227

•	 void synchronize(void)
This function is called when a task wants to synchronize. If the criteria are not met, then the
task is blocked in some way (see Implementation Strategies, below). This is commonly
done either through the use of the Observer Pattern (see Chapter 2) or the Guarded Call
Pattern.

The complexity of this class resides primarily in the synchronize() function; this evalu
ates the synchronization preconditions to see if they are met. These conditions may be internal
(such as the Thread Barrier variant of the pattern used for the example) or external, or any
combination of the two.

It is important to note that the Rendezvous object itself doesn’t normally identify the threads
as they rendezvous; as far as the Rendezvous object is concerned the tasks are anonymous.
If they are not, such as when the strategy calls for tasks to rendezvous in a specific order,
then the synchronize() function can accept that information in the form of one or more
parameters.

4.7.4.2 Semaphore
This is a normal counting semaphore. The semaphore provides the following operations:

•	 Semaphore* create_semaphore(void)
•	 destroy_semaphore(Semaphore*)
•	 lock_semaphore(Semaphore*)
•	 release_semaphore(Semaphore*)

4.7.4.3 SynchronizingThread

This element represents a thread that uses the Rendezvous object for synchronization. It will
run until its synchronization point and then call synchronize() function.

There are a number of ways to implement the pattern that result in minor changes to the
parameters and return types for the pattern elements.

4.7.5 Consequences

In this pattern, two or more tasks can be synchronized by any arbitrarily complex strategy that
can be encoded in the Rendezvous class. The pattern itself is simple and flexible and easily
lends itself to specialization and adaptation.

The pattern is most appropriate when the tasks must halt at their synchronization point; that is,
the pattern implements a blocking rendezvous. If a nonblocking rendezvous is desired, then this
pattern can be mixed with a Queuing Pattern or the Observer Pattern with callbacks to a
notify() function within the SynchronizingThread.

228 Chapter 4

4.7.6 Implementation Strategies

This pattern may be implemented with the Observer Pattern from Chapter 3 or with the
Guarded Call Pattern from this chapter. If the pattern is implemented with the Observer Pattern,
then the Tasks must register with the address of a function to call when the synchronization
criteria have been met. If the pattern is implemented with a Guarded Call Pattern, then each
Rendezvous object owns a single semaphore that is enabled when the Rendezvous object is
created. Each calling task then calls the register() function when it wants to synchronize.
When the synchronization criteria is met, the semaphore is released, and the tasks are then all
free to run according to the normal scheduling strategy.

4.7.7 Related Patterns

This pattern may be overkill when simpler solutions such as Guarded Call or Queuing Patterns
may suffice.

The pattern may be implemented in a number of different ways, as well, using the Guarded Call
or Observer Patterns to manage the thread blocking and unblocking.

4.7.8 Example

In this example (Figure 4-21), we have implemented a specific form of the Rendezvous Pattern knows
as the Thread Barrier Pattern. In this pattern, the Rendezvous object only knows that a certain number
of tasks are expected to rendezvous. When that number of tasks have called the synchronize()

function, the set of blocked tasks are released. The example also implemented the pattern with the use
of semaphores (Guarded Call Pattern) and lets the operating system block and unlock the tasks.

The algorithm for the Thread Barrier is well understood using counting semaphores. See the
code for the synchronize operation in Code Listing 4-45.

#ifndef ThreadBarrier_H

#define ThreadBarrier_H

/*# # auto_generated */

#include <oxf/Ric.h>

/*# # auto_generated */

#include "RendezvousExample.h"

/*# # auto_generated */

#include <oxf/RiCTask.h>

/*# # package RendezvousPattern::RendezvousExample */

/*# # class ThreadBarrier */
typedef struct ThreadBarrier ThreadBarrier;
struct ThreadBarrier {

int currentCount;

Design Patterns for Embedding Concurrency and Resource Management 229

Figure 4-21: Rendezvous Example

int expectedCount;

OSSemaphore* barrier;

OSSemaphore* mutex;

};

/* Constructors and destructors:*/
void ThreadBarrier_Init(ThreadBarrier* const me);
void ThreadBarrier_Cleanup(ThreadBarrier* const me);

/* Operations */
void ThreadBarrier_reset(ThreadBarrier* const me, int x);
void ThreadBarrier_synchronize(ThreadBarrier* const me);
ThreadBarrier * ThreadBarrier_Create(void);
void ThreadBarrier_Destroy(ThreadBarrier* const me);
#endif

Code Listing 4-20: ThreadBarrier.h

#include "ThreadBarrier.h"

void ThreadBarrier_Init(ThreadBarrier* const me) {

me->currentCount = 0;

me->expectedCount = 3;

230 Chapter 4

me->mutex = OSSemaphore_Create();

me->barrier = OSSemaphore_Create();

if (me->barrier) {

OSSemaphore_lock(me->barrier);
printf("BARRIER IS LOCKED FIRST TIME\n");

};
}

void ThreadBarrier_Cleanup(ThreadBarrier* const me) {
OSSemaphore_Destroy(me->barrier);
OSSemaphore_Destroy(me->mutex);

}

void ThreadBarrier_reset(ThreadBarrier* const me, int x) {
me->expectedCount = x;
me->currentCount = 0;

}

void ThreadBarrier_synchronize(ThreadBarrier* const me) {
/*

protect the critical region around

the currentCount

*/
OSSemaphore_lock(me->mutex);

++me->currentCount; /* critical region */
OSSemaphore_release(me->mutex);

/*

are conditions for unblocking met?

if so, then release the first blocked

thread or the highest priority blocked

thread (depending on the OS)

*/
if (me->currentCount == me->expectedCount) {

printf("Conditions met\n");
OSSemaphore_release(me->barrier);

};

/*

lock the semaphore and when released

then release it for the next blocked thread

*/

OSSemaphore_lock(me->barrier);

OSSemaphore_release(me->barrier);

}

ThreadBarrier * ThreadBarrier_Create(void) {
ThreadBarrier* me = (ThreadBarrier *)

malloc(sizeof(ThreadBarrier));
if(me!=NULL)

Design Patterns for Embedding Concurrency and Resource Management 231

ThreadBarrier_Init(me);

return me;

}

void ThreadBarrier_Destroy(ThreadBarrier* const me) {

if(me!=NULL)

ThreadBarrier_Cleanup(me);

free(me);

}

Code Listing 4-21: ThreadBarrier.c

Deadlock Avoidance Patterns
The last problem I want to address in this chapter is deadlock. Deadlock is a situation in which
multiple clients are simultaneously waiting for conditions that cannot, in principle, occur.

Figure 4-22 shows an example of deadlock. In this example, the priority of Task 1 is higher
than that of Task 2. The figure shows a timing diagram overlayed with a class diagram showing
the structure. In addition to the tasks, there are two resources, R1 and R2, shared by both tasks.
The problem arises if the tasks lock the resources in reverse order and Task 1 preempts Task 2

Figure 4-22: Deadlock example

232 Chapter 4

between Task 1 between locking R1 and R2. The following description refers to the named
points in Figure 4-22.

A.	 At this point, Task 2 runs.
B.	 Task 2 locks R1 and is just about to lock R2.
C.	 Task 1 runs. Since it is higher priority than Task 2, it preempts Task 2.
D.	 Task 1 locks R2.
E.	 Task 1 now attempts to lock R1, however, R1 is currently locked by Task 2. If Task 1

blocks to allow Task 2 to run, Task 2 must block as soon as it tries to lock R1. The system
is in deadlock.

It is enough to break any of the four required conditions for deadlock (below) conditions to
ensure that deadlock cannot appear. The simultaneous locking, ordered locking, and critical
region patterns all avoid the problems of deadlock. For example, had Task 2 enabled a critical
region (i.e., disallowed task switching) before it locked R1, then Task 1 would not have been
able to preempt it before it locked R2. If both tasks locked the resources in the same order,
deadlock would have been prevented. If Task 2 locks both resources at the same time, there
would be no problem. Deadlock is easy to prevent, but you must take careful steps to do so.

Leaving aside the common problems of software errors, deadlocks require four conditions to be
true:

1.	 mutual exclusion locking of resources
2.	 some resources are locked while others are requested
3.	 preemption while resources are locked is allowed
4.	 a circular waiting condition exists

Deadlock can be avoided by breaking any of these four conditions. Using the Critical Region
Pattern, for example, breaks rules #1 and #3. The Queuing Pattern, because it uses asynchro
nous message passing avoids #1 (other than the lock on the queue access itself). This chapter
finishes up with two other patterns that avoid deadlock.

4.8 Simultaneous Locking Pattern
The Simultaneous Locking Pattern is a pattern solely concerned with deadlock avoidance. It achieves
this by locking breaking condition #2 (holding resources while waiting for others). The pattern works
in an all-or-none fashion. Either all needed resources are locked at once or none are locked.

4.8.1 Abstract

Deadlock can be solved by breaking any of the four required conditions. This pattern prevents
the condition of holding some resources by requesting others by allocating them all at once.

Design Patterns for Embedding Concurrency and Resource Management 233

However, this pattern has an advantage over the Critical Region Pattern by allowing higher
priority tasks to run if they don’t need any of the locked resources.

4.8.2 Problem

The problem of deadlock is a serious enough one in highly reliable computing that many
systems design in specific mechanisms to detect it or avoid it. As previously discussed,
deadlock occurs when a task is waiting on a condition that can never, in principle, be satisfied.
There are four conditions that must be true for deadlock to occur, and it is sufficient to deny the
existence of any one of these. The Simultaneous Locking Pattern breaks condition #2, not
allowing any task to lock resources while waiting for other resources to be free.

4.8.3 Pattern Structure

The structure of the pattern is shown in Figure 4-23.

Figure 4-23: Simultaneous Locking Pattern general case

234 Chapter 4

Figure 4-24: Simplified Simultaneous Locking Pattern in which each resource must be assigned
to a single Resource Master

In general, a MultimasteredResource can be a part of any number of different sets of
resources, where a separate instance of ResourceMaster manages one such set. This
potential sharing of resources across multiple ResourceMasters complicates the situation.
When this flexibility is not needed, the situation simplifies to that shown in Figure 4-24. While
the difference may not appear to be great, it removes the requirement for a tryLock()

function on the Mutex and it is algorithmically much simpler.

4.8.4 Collaboration Roles

This section describes the roles for this pattern.

4.8.4.1 MasteredResource
This class is an element of the Simplified Simultaneous Locking Pattern. It represents a shared
resource that is owned by a single instance of ResourceMasterSimplified. If it can be deter
mined that each MasteredResource can be uniquely assigned to a set controlled by a single
instance of ResourceMasterSimplified, life is much simpler; in this case the resource
does not need its own Mutex because it will execute under the auspices of the Mutex of the
ResourceMasterSimplified. If the resource must be shared in multiple resource groups,
then its becomes a MultimasteredResource, which is a part of the more general pattern.

4.8.4.2 MultimasteredResource
This class is an element of the general Simultaneous Locking Pattern. It is managed by multiple
ResourceMasters, then it requires its own mutex (via its like itsPartMutex). The Mutex

it uses must provide the tryLock() function so that it can be determined by the
ResourceMaster whether all the attempted locks will succeed or fail.

Design Patterns for Embedding Concurrency and Resource Management 235

4.8.4.3 Mutex
This element is a normal mutex semaphore as used in previous patterns; if offers lock() and
release() functions that work in the way standard for a mutex semaphore.

4.8.4.4 QueryMutex
This element is a normal mutex semaphore except that it also provides a tryLock()

function for the general pattern case. This function works like the normal lock()

function except that it returns with an error code if the lock fails rather than blocking
the current thread. In the specialized form of the pattern (in which a single resource
is owned by a single ResourceMaster), then the tryLock() function isn’t
needed.

4.8.4.5 ResourceClient
This element is a client that wants to access a set of resources all at once to avoid potential
deadlock. Although it has direct access (via its itsMultimasteredResource link) to the
clients, it doesn’t access them until it has successfully received a lock on the
ResourceMaster. This requires discipline on the part of the developers of the
ResourceClients to ensure that they never attempt to access any of the client services
without first getting a lock, and once the client is done with the resources, it frees the
ResourceMaster.

4.8.4.6 Resource Master
The ResourceMaster controls the lock of the entire set of resources. It is used in the general
case of the pattern and it must return a lock if and only if it can lock all the resources. While it
can be implemented with mutexes solely on the parts (instances of ResourceMaster) because
it may be blocked multiple times while it attempts to lock the set of individual
MultimasteredResources, it may have unacceptable execution times in practice. A solu
tion, implemented here, is to use the tryLock() function of the mutex to test. If the tryLock

() calls for the entire set of MultimasteredResources to all succeed, then the
ResourceMaster itself is locked and the ResourceClient is allowed to use its link to the
MultimasteredResources. If the ResourceClient cannot lock all of the
MultimasteredResources, then the ResourceMaster unlocks all of the
MultimasteredResources it locked (before it found one where it failed), and returns with
an error code to the ResourceClient.

4.8.4.7 ResourceMasterSimplified
The Simplified Simultaneous Locking Pattern doesn’t require the additional developer disci
pline required for the general case. The ResourceClient no longer has direct links to the
MasterResources per se; instead, the ResourceMasterSimplified republishes all the
services of its MasteredResources and delegates the functions directly to them. All of the
functions share the same mutex.

236 Chapter 4

4.8.5 Consequences

The Simultaneous Locking Pattern prevents deadlock by removing required condition
#2 – some resources are locked while others are requested – by locking either all of the
resources needed at once, or none of them. However, while the pattern removes the
possibility of deadlock, it may increase the delay of the execution of other tasks. This delay
may occur even in situations in which there is no actual resource conflict. The problem is
far more pronounced for resources that are widely shared than for resources that are
shared more narrowly. In addition, the pattern does not address priority inversion and in
fact may make it worse, unless some priority inversion bounding pattern is deployed, such
as the Guarded Call Pattern with priority inheritance. The general case for the pattern,
shown in Figure 4-24, requires developer discipline in that they must avoid using the
direct links to the MultimasteredResources until they have successfully been given a
lock. In large project teams, this discipline can be ignored resulting in subtle and
hard-to-identify errors. The simplified model, shown in Figure 4-24, doesn’t have this
problem because the ResourceMasterSimplified republishes the resource access
methods.

Of course this pattern only applies when deadlock is a possibility, such as when multiple
resources are shared with at least two in common by at least two threads.

4.8.6 Implementation Strategies

The implementation of this pattern should pose no difficulties other than the need to use, in the
general case, a mutex semaphore that supports a tryLock() operation, and the need to ensure
that the precondition of access (successful locking of the MultimasteredResource) is
achieved before accessing the resource directly.

4.8.7 Related Patterns

Deadlock can be prevented by avoiding any of the required four conditions. The Critical
Regions Pattern avoids by breaking condition #1 – mutual exclusion locking of resources. The
Ordered Locking Pattern, described later in this chapter, prevents deadlock by breaking
condition #4 – circular waiting condition.

Because this pattern doesn’t address the concern of unbounded priority inversion, it can be
mixed with the Guarded Call Pattern with priority inheritance.

4.8.8 Example

Figure 4-25 shows an example of the simplified form of Figure 4-24. In this case, the
SensorMaster replicates the functions of the sensors (although the names are munged with the

Design Patterns for Embedding Concurrency and Resource Management 237

Figure 4-25: Simultaneous Locking Pattern example

names of the servers to disambiguate services). When a client (such as the PositionPredictor)
invokes one of the services, the SensorMaster locks the mutex and releases it before returning to
the client. The SensorMaster owns a mutex semaphore for this purpose.

#ifndef SensorMaster_H

#define SensorMaster_H

#include "Position.h"

struct DopplerSpeedSensor;

struct GPSPositionSensor;

struct OpticalSpeedSensor;

struct SimMutex;

typedef struct SensorMaster SensorMaster;
struct SensorMaster {

struct DopplerSpeedSensor* itsDopplerSpeedSensor;

struct GPSPositionSensor* itsGPSPositionSensor;

238 Chapter 4

struct OpticalSpeedSensor* itsOpticalSpeedSensor;
struct SimMutex* itsSimMutex;

};

/* Constructors and destructors:*/

void SensorMaster_Init(SensorMaster* const me);

void SensorMaster_Cleanup(SensorMaster* const me);

/* Operations */

void SensorMaster_doppler_configure(SensorMaster* const me, short sampleRate);

void SensorMaster_doppler_disable(SensorMaster* const me);

void SensorMaster_doppler_enable(SensorMaster* const me);

double SensorMaster_doppler_getSpeed(SensorMaster* const me);

void SensorMaster_gps_activate(SensorMaster* const me);

void SensorMaster_gps_configure(SensorMaster* const me, short

reqSatellites, int useFast);

void SensorMaster_gps_deactivate(SensorMaster* const me);

struct Position SensorMaster_gps_getPosition(SensorMaster* const me);

void SensorMaster_optical_configure(SensorMaster* const me, int

wheelSize, int sensitivity);

void SensorMaster_optical_disable(SensorMaster* const me);

void SensorMaster_optical_enable(SensorMaster* const me);

double SensorMaster_optical_getSpeed(SensorMaster* const me);

struct DopplerSpeedSensor*

SensorMaster_getItsDopplerSpeedSensor(const SensorMaster* const me);

void SensorMaster_setItsDopplerSpeedSensor(SensorMaster* const

me, struct DopplerSpeedSensor* p_DopplerSpeedSensor);

struct GPSPositionSensor*

SensorMaster_getItsGPSPositionSensor(const SensorMaster* const me);

void SensorMaster_setItsGPSPositionSensor(SensorMaster* const me,

struct GPSPositionSensor* p_GPSPositionSensor);

struct OpticalSpeedSensor*

SensorMaster_getItsOpticalSpeedSensor(const SensorMaster* const me);

void SensorMaster_setItsOpticalSpeedSensor(SensorMaster* const me,

struct OpticalSpeedSensor* p_OpticalSpeedSensor);

struct SimMutex* SensorMaster_getItsSimMutex(const SensorMaster* const me);

void SensorMaster_setItsSimMutex(SensorMaster* const me, struct

SimMutex* p_SimMutex);

SensorMaster * SensorMaster_Create(void);

Design Patterns for Embedding Concurrency and Resource Management 239

void SensorMaster_Destroy(SensorMaster* const me);

#endif

Code Listing 4-22: SensorMaster.h

#include "SensorMaster.h"

#include "DopplerSpeedSensor.h"

#include "GPSPositionSensor.h"

#include "OpticalSpeedSensor.h"

#include "SimMutex.h"

static void cleanUpRelations(SensorMaster* const me);

void SensorMaster_Init(SensorMaster* const me) {

me->itsDopplerSpeedSensor = NULL;

me->itsGPSPositionSensor = NULL;

me->itsOpticalSpeedSensor = NULL;

me->itsSimMutex = NULL;

}

void SensorMaster_Cleanup(SensorMaster* const me) {

cleanUpRelations(me);

}

void SensorMaster_doppler_configure(SensorMaster* const me, short sampleRate) {
SimMutex_lock(me->itsSimMutex);
DopplerSpeedSensor_configure(me->itsDopplerSpeedSensor,sampleRate);
SimMutex_release(me->itsSimMutex);

}

void SensorMaster_doppler_disable(SensorMaster* const me) {

SimMutex_lock(me->itsSimMutex);

DopplerSpeedSensor_disable(me->itsDopplerSpeedSensor);

SimMutex_release(me->itsSimMutex);

}

void SensorMaster_doppler_enable(SensorMaster* const me) {

SimMutex_lock(me->itsSimMutex);

DopplerSpeedSensor_enable(me->itsDopplerSpeedSensor);

SimMutex_release(me->itsSimMutex);

}

double SensorMaster_doppler_getSpeed(SensorMaster* const me) {

double speed;

SimMutex_lock(me->itsSimMutex);

speed = DopplerSpeedSensor_getSpeed(me->itsDopplerSpeedSensor);

240 Chapter 4

SimMutex_release(me->itsSimMutex);

return speed;

}

void SensorMaster_gps_activate(SensorMaster* const me) {
SimMutex_lock(me->itsSimMutex);
GPSPositionSensor_activate(me->itsGPSPositionSensor);
SimMutex_release(me->itsSimMutex);

}

void SensorMaster_gps_configure(SensorMaster* const me, short reqSatellites, int use-
Fast) {

SimMutex_lock(me->itsSimMutex);
GPSPositionSensor_configure(me->itsGPSPositionSensor,reqSatellites,useFast);
SimMutex_release(me->itsSimMutex);

}

void SensorMaster_gps_deactivate(SensorMaster* const me) {
SimMutex_lock(me->itsSimMutex);
GPSPositionSensor_deactivate(me->itsGPSPositionSensor);
SimMutex_release(me->itsSimMutex);

}

struct Position SensorMaster_gps_getPosition(SensorMaster* const me) {
Position p;
SimMutex_lock(me->itsSimMutex);
p = GPSPositionSensor_getPosition(me->itsGPSPositionSensor);
SimMutex_release(me->itsSimMutex);
return p;

}

void SensorMaster_optical_configure(SensorMaster* const me, int wheelSize,
int sensitivity) {

SimMutex_lock(me->itsSimMutex);
OpticalSpeedSensor_configure(me->itsOpticalSpeedSensor,wheelSize, sensitivity);
SimMutex_release(me->itsSimMutex);

}

void SensorMaster_optical_disable(SensorMaster* const me) {
SimMutex_lock(me->itsSimMutex);
OpticalSpeedSensor_disable(me->itsOpticalSpeedSensor);
SimMutex_release(me->itsSimMutex);

}

void SensorMaster_optical_enable(SensorMaster* const me) {
SimMutex_lock(me->itsSimMutex);
OpticalSpeedSensor_enable(me->itsOpticalSpeedSensor);
SimMutex_release(me->itsSimMutex);

}

Design Patterns for Embedding Concurrency and Resource Management 241

double SensorMaster_optical_getSpeed(SensorMaster* const me) {
double speed;
SimMutex_lock(me->itsSimMutex);
speed = OpticalSpeedSensor_getSpeed(me->itsOpticalSpeedSensor);
SimMutex_release(me->itsSimMutex);
return speed;

}

struct DopplerSpeedSensor* SensorMaster_getItsDopplerSpeedSensor(const
SensorMaster* const me) {

return (struct DopplerSpeedSensor*)me->itsDopplerSpeedSensor;
}

void SensorMaster_setItsDopplerSpeedSensor(SensorMaster* const me, struct Doppler-
SpeedSensor* p_DopplerSpeedSensor) {

me->itsDopplerSpeedSensor = p_DopplerSpeedSensor;
}

struct GPSPositionSensor* SensorMaster_getItsGPSPositionSensor(const
SensorMaster* const me) {

return (struct GPSPositionSensor*)me->itsGPSPositionSensor;
}

void SensorMaster_setItsGPSPositionSensor(SensorMaster* const me,
struct GPSPositionSensor* p_GPSPositionSensor) {

me->itsGPSPositionSensor = p_GPSPositionSensor;
}

struct OpticalSpeedSensor* SensorMaster_getItsOpticalSpeedSensor(const
SensorMaster* const me) {

return (struct OpticalSpeedSensor*)me->itsOpticalSpeedSensor;
}

void SensorMaster_setItsOpticalSpeedSensor(SensorMaster* const me, struct Optical-
SpeedSensor* p_OpticalSpeedSensor) {

me->itsOpticalSpeedSensor = p_OpticalSpeedSensor;
}

struct SimMutex* SensorMaster_getItsSimMutex(const SensorMaster* const me) {
return (struct SimMutex*)me->itsSimMutex;

}

void SensorMaster_setItsSimMutex(SensorMaster* const me, struct
SimMutex* p_SimMutex) {

me->itsSimMutex = p_SimMutex;
}

SensorMaster * SensorMaster_Create(void) {

242 Chapter 4

SensorMaster* me = (SensorMaster *)

malloc(sizeof(SensorMaster));

if(me!=NULL)

SensorMaster_Init(me);

return me;

}

void SensorMaster_Destroy(SensorMaster* const me) {

if(me!=NULL)

SensorMaster_Cleanup(me);

free(me);

}

static void cleanUpRelations(SensorMaster* const me) {

if(me->itsDopplerSpeedSensor != NULL)

me->itsDopplerSpeedSensor = NULL;

if(me->itsGPSPositionSensor != NULL)

me->itsGPSPositionSensor = NULL;

if(me->itsOpticalSpeedSensor != NULL)

me->itsOpticalSpeedSensor = NULL;

if(me->itsSimMutex != NULL)

me->itsSimMutex = NULL;

}

Code Listing 4-23: SensorMaster.c

4.9 Ordered Locking
The Ordered Locking Pattern is another way to ensure that deadlock cannot occur, this
time by preventing condition 4 (circular waiting) from occurring. It does this by
ordering the resources and requiring that they always be locked by a client in that
specified order. If this is religiously enforced, then no circular waiting condition can ever
occur.

4.9.1 Abstract

The Ordered Locking Pattern eliminates deadlock by ordering resources and enforcing a policy
in which resources must be allocated only in a specific order. For monadic (that is, functions
that can be used independently of others) operations, the client can invoke them without special
consideration and the called function will lock and release the resource internally. For holding
locks over the long term – accessing dyadic (that is, functions that require the caller to explicitly
lock and unlock them) functions – the client must explicitly lock and release the resources,
rather than doing it implicitly by merely invoking a service on a resource. This means that the
potential for neglecting to unlock the resource exists.

Design Patterns for Embedding Concurrency and Resource Management 243

4.9.2 Problem

The Ordered Locking Pattern solely addresses the problem of deadlock elimination, as does the
previous Simultaneous Locking Pattern.

4.9.3 Pattern Structure

Figure 4-26 shows the pattern structure for the Ordered Locking Pattern.

Figure 4-26: Ordered Locking Pattern

244 Chapter 4

4.9.4 Collaboration Roles

This section describes the roles for this pattern.

4.9.4.1 Mutex
The Mutex is used by two other pattern elements: OrderedResource and ResourceList. Of
course, this means that each of these elements will use different instances of the Mutex class. As
with the other patterns in this chapter, the Mutex class provides two basic services. The lock()

function locks the resource (if currently unlocked) or blocks the caller (if already locked). The
release() function removes the lock and allows any blocked callers to continue.

4.9.4.2 OrderedResource
The OrderedResource is really the heart of the pattern. It has a resourceID attribute. This
is a unique ID associated with each resource instance and, along with the ResourceList, this
class enforces the ordered locking rule:

A resource may only be locked if its resourceID is greater than the largest resourceID of any
locked resource.

The orderedResource may have different kinds of functions. The first kind, called monadic
functions, internally lock the mutex, perform their magic, unlock the Mutex, and then return.
The magic inside the function may call functions of other resources, hence the need to use the
ResourceList to prevent possible deadlocks. Figure 4-27 shows the flow of control for such
a monadicAccessFunction.

The other kind of access function is dyadic, called so because it requires a separate pair of calls
to manage the lock on the resource. That is, before a dyadic access function is called, the
ResourceClient should first call lockDyadic() and after the ResourceClient is done
with the resource, it should call releaseDyadic(). Because of the ordered locking enfor
cement, the ResourceClient can hold any number of resources in the locked state while it
performs its work without fear of causing deadlock. However, the ResourceClient must
lock them in the order of their resourceIDs or errors will be returned and access will be
denied. Figure 4-28 shows the flowchart for locking the resource and Figure 4-29 shows the
flowchart for its release.

An interesting question arises as to how to assign the resourceIDs. In many ways, the best
approach is to assign them at design time so that the constructor OrderedResource_Init()

simply initializes the value. This approach requires design-time analysis to ensure that the
resourceIDs are unique but also provides an opportunity to use a priori information to
identify an optimal assignment of resourceIDs depending on the usage patterns of the
various resources. Design-time analysis may discover resourceID assignments that lessen
blocking due to deadlock prevention mechanisms (that is, if we assign the resourceIDs in
this order, we minimize the occurrence of resource lock rejection due to potential deadlocking).

Design Patterns for Embedding Concurrency and Resource Management 245

Figure 4-27: Flowchart for monadicAccessFunction

On the other hand, this analysis may be very difficult for larger systems. However, dynamically
assigning the resourceIDs with a resourceID server is problematic as it may lead to
pathological conditions under which the order in which a set of resources was called in one case
leads to the permanent failure of another ResourceClient. For this reason, I recommend
design-time assignment of resourceIDs.

4.9.4.3 ResourceClient
The ResourceClient represents the set of software elements that want to invoke the
services of the OrderedResources. The ResourceClient doesn’t need to know

246 Chapter 4

Figure 4-28: Flowchart for lockDyadic

Figure 4-29: Flowchart for releaseDyadic

Design Patterns for Embedding Concurrency and Resource Management 247

anything about the resourceIDs per se, but as a part of testing, they need to be
designed so that they only lock the resources in the correct order. For monadic functions,
they don’t need to do anything special – they will just invoke the
monadicAccessFunction(). For dyadic access functions, the ResourceClient must
explicitly lock the resource first, invoke the needed services, and then call unlock. The use
of the dyadic form is more flexible – since the ResourceClient can hold the locks on
any number of resources as long as it needs them – but requires additional discipline on
the part of the developer.

4.9.4.4 ResourceList
This element provides two important functions. addLock()returns 0 (“ok”) if the passed
resourceID is greater than that of the largest currently locked resource. If the passed
referenceID is less than the largest resource ID, then POORLY_ORDERED_ACCESS is
returned; if the passed referenceID equals it, then DUPLICATE_IDS is returned. (Note that if
the same resource is accessed while it is locked, its mutex will block before the call is made to
addLock(), so the only way this can occur is if the resourceID is nonunique). It is also
important to note that there must be only one ResourceList for the application, giving the
resourceIDs an effective global scope.

4.9.4.5 ResourceReference
This is just the resourceID held in an ordered list; most likely an array. It is insufficient to
just keep the largest value only since many resources might be locked at any one time.

4.9.5 Consequences

This pattern effectively removes the possibility of resource-based deadlocks by removing
the possibility of condition 4 – circular waiting. For the algorithm to work, any ordering
of OrderedResources will do provided that this ordering is global. However, some
orderings are better than others and will result is less blocking overall. This may take
some analysis at design time to identify the best ordering of the OrderedResources. As
mentioned above, if OrderedResources are themselves ResourceClients (a reason
able possibility), then they should only invoke services of OrderedResources that have
higher valued IDs than they do. If they invoke a lower-valued OrderedResources, then
they are in effect violating the ordered locking protocol by the transitive property of
locking (if A locks B and then B locks C, then A is in effect locking C). This results in a
returned error code.

While draconian, one solution to the potential problem of transitive violation of the
ordering policy is to enforce the rule that a OrderedResources may never invoke
services or lock other OrderedResources. If your system design does allow such
transitive locking, then each transitive path must be examined to ensure that the ordering
policy is not violated.

248 Chapter 4

4.9.6 Implementation Strategies

The implementation of the pattern requires the addition of a resourceID to each
OrderedResource and logic in the ResourceList to ensure that the resourceID of each
OrderedResource is larger than any currently locked resourceID. In addition, a list of
locked resourceIDs must be maintained so that as OrderedResources are released,
additional ones can be locked appropriately.

The most common implementation for the ResourceList is as an array of integers repre
senting the resourceIDs in the order in which they are locked.

4.9.7 Related Patterns

This pattern is specifically designed to remove the possibilities of deadlocks. The Simultaneous
Locking Pattern also does this, although through the different mechanism of preventing
condition 2 (some resources are locked while others are requested). The Critical Region Pattern
also removes the possibility of deadlock by preventing condition 3 (preemption while resources
are locked is allowed). The Cyclic Executive Pattern avoids deadlock by preventing condition 1
(mutual exclusion locking of resources).

4.9.8 Example

The example in Figure 4-30 shows an application of the Ordered Locking Pattern. In this
(simplified) aircraft example, three servers hold related, but distinct information;
AttitudeSensor has information about the attitude (roll, pitch, and yaw) of the aircraft,
PositionSensor has information about where the aircraft is in the airspace (latitude, long
itude, and altitude), and the VelocitySensor has information about how fast the aircraft is
moving in three dimensions.

The example has two different clients. The KinematicModelClient needs to get time-
coherent information about the state of the aircraft for the purpose of precise and detailed
control of actuators and engines. The RoutePlanningClient needs the same information to
determine updates to the route depending on fuel usage, threat assessments, mission criticality,
and so on.

Let’s suppose, for the purpose of this discussion that for both the clients it is crucial to get
data in the same sample interval. A way to do that is to lock all the resources, gather and
manipulate the data, and then release all the resources. If the KinematicModel locks them in
the order 1) PositionSensor, 2) VelocitySensor, and 3) AttitudeSensor but the
RoutePlanningClient (done by a different subcontractor) locks them in the reverse
order, there is an opportunity for deadlock. Ergo, we’ve added the Ordered Locking Pattern
to specifically prevent deadlock. We’ve also used the dyadic form of the pattern so the

Design Patterns for Embedding Concurrency and Resource Management 249

Figure 4-30: Ordered Locking Pattern Example

clients are expected to manually lock the resources before use and release the resources
once done.

Note that the mutex class shows up multiple times in the diagram. This is done to minimize line
crossing in the diagram. There is a single mutex class, but four distinct instances of that class,
each providing a separate locking semaphore for its owner.

I’ve included the code for two of the classes, the VelocitySensor and the ResourceList

to illustrate how this pattern may be implemented. The error codes are simply implemented in
the OrdseredLockingExample.h file as

#define POORLY_ORDERED_ACCESS (1)

#define DUPLICATED_IDS (2)

Code Listing 4-48 has the VelocitySensor.h code and Code Listing 4-49 has the corresponding
C code.

250 Chapter 4

#ifndef VelocitySensor_H

#define VelocitySensor_H

/* brings in the error codes */

#include "OrderedLockingExample.h"

#include "Velocity.h"

struct Mutex;

struct ResourceList;

typedef struct VelocitySensor VelocitySensor;

struct VelocitySensor {

int resourceID;

struct Velocity velocity;

struct Mutex* itsMutex;

struct ResourceList* itsResourceList;

};

void VelocitySensor_Init(VelocitySensor* const me);

void VelocitySensor_Cleanup(VelocitySensor* const me);

/* Operations */

struct Velocity VelocitySensor_getVelocity(VelocitySensor* const me);

int VelocitySensor_lockDyadic(VelocitySensor* const me);

void VelocitySensor_releaseDyadic(VelocitySensor* const me);

void VelocitySensor_setVelocity(VelocitySensor* const me, struct Velocity v);

struct Mutex* VelocitySensor_getItsMutex(const VelocitySensor* const me);

void VelocitySensor_setItsMutex(VelocitySensor* const me, struct Mutex* p_Mutex);

struct ResourceList* VelocitySensor_getItsResourceList(const
VelocitySensor* const me);

void VelocitySensor_setItsResourceList(VelocitySensor* const me,

struct ResourceList* p_ResourceList);

VelocitySensor * VelocitySensor_Create(void);

void VelocitySensor_Destroy(VelocitySensor* const me);

#endif

Code Listing 4-24: VelocitySensor.h

Design Patterns for Embedding Concurrency and Resource Management 251

#include "VelocitySensor.h"

#include "Mutex.h"

#include "ResourceList.h"

static void cleanUpRelations(VelocitySensor* const me);

void VelocitySensor_Init(VelocitySensor* const me) {
me->resourceID = 2;
{

Velocity_Init(&(me->velocity));
}
me->itsMutex = NULL;
me->itsResourceList = NULL;

}

void VelocitySensor_Cleanup(VelocitySensor* const me) {
cleanUpRelations(me);

}

struct Velocity VelocitySensor_getVelocity(VelocitySensor* const me) {
return me->velocity;

}

int VelocitySensor_lockDyadic(VelocitySensor* const me) {
int ok;

Mutex_lock(me->itsMutex);

ok = ResourceList_addLock(me->itsResourceList, me->resourceID);

if (ok != 0)

Mutex_release(me->itsMutex);
return ok;

}

void VelocitySensor_releaseDyadic(VelocitySensor* const me) {
ResourceList_removeLock(me->itsResourceList, me->resourceID);
Mutex_release(me->itsMutex);

}

void VelocitySensor_setVelocity(VelocitySensor* const me, struct Velocity v) {
me->velocity = v;

}

struct Mutex* VelocitySensor_getItsMutex(const VelocitySensor* const me) {
return (struct Mutex*)me->itsMutex;

}

void VelocitySensor_setItsMutex(VelocitySensor* const me, struct Mutex* p_Mutex) {
me->itsMutex = p_Mutex;

}

252 Chapter 4

struct ResourceList* VelocitySensor_getItsResourceList(const

VelocitySensor* const me) {

return (struct ResourceList*)me->itsResourceList;

}

void VelocitySensor_setItsResourceList(VelocitySensor* const me,

struct ResourceList* p_ResourceList) {

me->itsResourceList = p_ResourceList;

}

VelocitySensor * VelocitySensor_Create(void) {

VelocitySensor* me = (VelocitySensor *)

malloc(sizeof(VelocitySensor));

if(me!=NULL)

VelocitySensor_Init(me);

return me;

}

void VelocitySensor_Destroy(VelocitySensor* const me) {

if(me!=NULL)

VelocitySensor_Cleanup(me);

free(me);

}

static void cleanUpRelations(VelocitySensor* const me) {

if(me->itsMutex != NULL)

me->itsMutex = NULL;

if(me->itsResourceList != NULL)

me->itsResourceList = NULL;

}

Code Listing 4-49: VelocitySensor.c

Of course, the key class for this pattern is the ResourceList. ResourceList.h is in Code Listing
4-50 with the corresponding C file shown in Code Listing 4-51.

#ifndef ResourceList_H

#define ResourceList_H

#include "OrderedLockingExample.h"

struct Mutex;

typedef struct ResourceList ResourceList;
struct ResourceList {

int nIDs;

int rIDList[20];

struct Mutex* itsMutex;

};

Design Patterns for Embedding Concurrency and Resource Management 253

/* Constructors and destructors:*/

void ResourceList_Init(ResourceList* const me);

void ResourceList_Cleanup(ResourceList* const me);

/* Operations */

int ResourceList_addLock(ResourceList* const me, int rID);

/* The elements are added in order but */

/* can be removed in any order. Therefore, */

/* the stored resoiurceIDs above the current */

/* one in the list must be moved down to */

/* lower in the list. */

void ResourceList_removeLock(ResourceList* const me, int rID);

struct Mutex* ResourceList_getItsMutex(const ResourceList* const me);

void ResourceList_setItsMutex(ResourceList* const me, struct Mutex* p_Mutex);

ResourceList * ResourceList_Create(void);

void ResourceList_Destroy(ResourceList* const me);

#endif

Code Listing 4-50: ResourceList.h

#include "ResourceList.h"

#include "Mutex.h"

static char isInOrder(ResourceList* const me, int rID);

static void cleanUpRelations(ResourceList* const me);

void ResourceList_Init(ResourceList* const me) {

me->nIDs = 0;

me->itsMutex = NULL;

}

void ResourceList_Cleanup(ResourceList* const me) {

cleanUpRelations(me);

}

int ResourceList_addLock(ResourceList* const me, int rID) {

int retVal;

Mutex_lock(me->itsMutex);

if (isInOrder(me,rID)) {

me->rIDList[me->nIDs++] = rID;

retVal = 0;

}

254 Chapter 4

else

if (rID == me->rIDList[me->nIDs])

retVal = DUPLICATED_IDS;

else

retVal = POORLY_ORDERED_ACCESS;

Mutex_release(me->itsMutex);

return retVal;

}

void ResourceList_removeLock(ResourceList* const me, int rID) {
int j,k;

if (me->nIDs) {

for (j=0; j<me->nIDs; j++) {

if (rID == me->rIDList[j]) {

for (k=j; k<me->nIDs-1; k++)

me->rIDList[k] = me->rIDList[k+1];
–me->nIDs;
break;
};

};
};

}

static char isInOrder(ResourceList* const me, int rID) {
if (me->nIDs)

return rID > me->rIDList[me->nIDs-1];
else

return 1;
}

struct Mutex* ResourceList_getItsMutex(const ResourceList* const me) {
return (struct Mutex*)me->itsMutex;

}

void ResourceList_setItsMutex(ResourceList* const me, struct Mutex* p_Mutex) {
me->itsMutex = p_Mutex;

}

ResourceList * ResourceList_Create(void) {
ResourceList* me = (ResourceList *)

malloc(sizeof(ResourceList));
if(me!=NULL)

ResourceList_Init(me);
return me;

}

void ResourceList_Destroy(ResourceList* const me) {
if(me!=NULL)
ResourceList_Cleanup(me);

Design Patterns for Embedding Concurrency and Resource Management 255

free(me);

}

static void cleanUpRelations(ResourceList* const me) {

if(me->itsMutex != NULL)

me->itsMutex = NULL;

}

Code Listing 4-51: ResourceList.c

4.10 So, What Have We Learned?
The chapter started off with a basic introduction to concurrency concepts, such as what do
we mean by the terms concurrency, urgency, criticality, resource, deadlock, and so on.
Concurrency is something that we deal with constantly in our daily lives; many many things
happen in parallel and we must account for when to start, stop, and synchronize. It is no
different in programming embedded systems, except that we must be more precise in our
definition and usage of the terms to ensure our systems’ predictably to the right thing all
the time.

We also talked about how to represent concurrency in the Unified Modeling Language (UML)
so that we could draw pictures of the patterns and understand what they mean. Primarily we use
«active» classes to represent threads and nest (part) objects inside these structured classes to
indicate the parts running within the thread context of the enclosing class. In the same thread, to
use a pun, we talked about the structure and services of a typical Real-Time Operating System
(RTOS).

This chapter then presented a number of patterns that dealt with concurrency and resource
management that are in common use in embedded systems. The first two – the Cyclic
Executive and the Static Priority Patterns – provided two different ways for scheduling threads.
The Cyclic Executive Pattern is very simple and easy to implement but is demonstrably
suboptimal in terms of responsiveness to incoming events. The Static Priority Pattern relies on
scheduling services of an RTOS kernel and gives very good responsiveness to events, but it is
less predictable and more complex than a Cyclic Executive.

The next three patterns – the Critical Region, the Guarded Call, and the Queuing Patterns –
addressed the concern of serializing access to resources in a multitasking environment. The
Critical Region Pattern turns off task switching during resource access, thus preventing the
possibility of resource data corruption. This approach works but blocks higher-priority tasks
that may never access the resource. The Guarded Call Pattern accomplishes the same resource
protection goal by using mutex semaphore. The naïve implementation of this pattern can lead to
unbounded priority inversion, so the pattern can be augmented with others, such as the Priority

256 Chapter 4

Inheritance Pattern, to limit priority inversion to a single level. The last pattern in this group, the
Queuing Pattern, serializes access to a resource by putting the requests in a queue and the
resource removes them from the queue in a first-in-first-out (FIFO) order. The Queuing is
conceptually very simple but can lead to delays in response to a request made of the resource.

The last two patterns – the Simultaneous Locking and the Ordered Locking Patterns –
concerned themselves with deadlock prevention. Deadlock is a very real problem that occurs
when there are conditions waited for that can never actually occur, and this happens far more
often than most people would suspect. Four conditions are required for deadlock to occur and
deadlock can be eliminated by violating any of these four conditions. The Simultaneous
Locking Pattern violates the requirement of holding one resource while requesting others
through the simple expedient of locking all resource it needs at once. The Ordered Locking
Pattern breaks another requirement of deadlocks, that a circular waiting condition occurs; by
ensuring that all clients locking the resource in the same order, circular waiting (and deadlock)
can be eliminated.

CHAPTER 5

Design Patterns for State Machines

Chapter Outline
5.1 Oh Behave! 259

5.2 Basic State Machine Concepts 261

5.2.1 OR-States 263

5.2.2 AND-States 265

5.2.3 Special Stuff: Timeouts, Conditionals, and More 267

5.2.4 Synchronous versus Asynchronous? 270

5.3 Single Event Receptor Pattern 274

5.3.1 Abstract 274

5.3.2 Problem 274

5.3.3 Pattern Structure 274

5.3.4 Collaboration Roles 275

5.3.4.1 Event 275

5.3.4.2 EventType 275

5.3.4.3 Mutex 276

5.3.4.4 TokenizerAsyncSingleReceptor 276

5.3.4.5 TokenizerSyncSingleReceptor 277

5.3.4.6 TSRClient 277

5.3.4.7 TSREventQueue 277

5.3.4.8 TSTATE 278

5.3.4.9 TSUBSTATE 278

5.3.5 Consequences 278

5.3.6 Implementation Strategies 278

5.3.7 Related Patterns 278

5.3.8 Example 278

5.4 Multiple Event Receptor Pattern 287

5.4.1 Abstract 287

5.4.2 Problem 287

5.4.3 Pattern Structure 288

5.4.4 Collaboration Roles 288

5.4.4.1 Mutex 288

5.4.4.2 TMRClient 289

5.4.4.3 TokenizeMultiReceptor 289

5.4.4.4 TSTATE 289

5.4.4.5 TSUBSTATE 290

5.4.5 Consequences 290

5.4.6 Implementation Strategies 290

Design Patterns for Embedded Systems in C
DOI:10.1016/B978-1-85617-707-8.00005-4
Copyright © 2011 Elsevier Inc. 257

258 Chapter 5

5.4.7 Related Patterns 290

5.4.8 Example 290

5.5 State Table Pattern 296

5.5.1 Abstract 296

5.5.2 Problem 296

5.5.3 Pattern Structure 296

5.5.4 Collaboration Roles 297

5.5.4.1 ActionPtr0 298

5.5.4.2 ActionPtr1 298

5.5.4.3 ActionType 298

5.5.4.4 Event 298

5.5.4.5 EventType 298

5.5.4.6 GuardType 298

5.5.4.7 Mutex 298

5.5.4.8 TableEntryType 298

5.5.4.9 TokenizerStateTable 298

5.5.4.10 TSTATETYPE 298

5.5.5 Consequences 299

5.5.6 Implementation Strategies 299

5.5.7 Related Patterns 299

5.5.8 Example 300

5.6 State Pattern 308

5.6.1 Abstract 308

5.6.2 Problem 308

5.6.3 Pattern Structure 308

5.6.4 Collaboration Roles 310

5.6.4.1 ActionPtr0 310

5.6.4.2 ActionPtr1 311

5.6.4.3 Context 311

5.6.4.4 Mutex 311

5.6.4.5 State Classes 311

5.6.4.6 StateActionSet 312

5.6.4.7 TSTATETYPE 312

5.6.5 Consequences 312

5.6.6 Implementation Strategies 313

5.6.7 Related Patterns 313

5.6.8 Example 314

5.7 AND-States 327

5.8 Decomposed AND-State Pattern 330

5.8.1 Abstract 331

5.8.2 Problem 331

5.8.3 Pattern Structure 331

5.8.4 Collaboration Roles 331

5.8.4.1 AbstractAndStateClass 331

5.8.4.2 ActionSet 331

5.8.4.3 AndStateList 331

Design Patterns for State Machines 259

5.8.4.4 ConcreteAndStateClass 333
5.8.4.5 ConcreteAndStateType 333
5.8.4.6 Context 333

5.8.5 Consequences 333
5.8.6 Implementation Strategies 333
5.8.7 Related Patterns 334
5.8.8 Example 334

5.9 OK, What Have We Learned? 356

Patterns in this chapter

Single Event Receptor Pattern – Implement state machines with a single event receptor

Multiple Event Receptor Pattern – Implement state machines with many event receptors

State Table Pattern – Implement a table-driven state machine

State Design Pattern – Implement state machines with creation of state objects

Decomposed And-State Pattern – Implement and-states through the decomposition of the
composite state

5.1 Oh Behave!
Behavior can be defined as a change in condition or value over time. It is often a response to an
external event or request, but autonomous systems decide for themselves when and how to
behave. I like to further characterize behavior into four basic kinds1. Simple behavior is behavior
independent of any history of the object or system. For example, computing cosðπ

4Þreturns the
same result regardless of what value the cos() function was invoked with before or when it was
computed. Similarly computing the maximum of two values is self-contained in the sense that it
doesn’t rely on the history of the system. Continuous behavior, on the other hand, does rely upon
the history of the object or system. For example, a moving average digital filter computes an
output that depends not only on current data but also on the history of the data (see Equation 5-1).

dj þ dj−1 þ dj−2 þ dj−3
fj ¼

4

Equation 5-1: Moving average digital filter

Similarly, a Proportional Integral-Differential (PID) control loop uses feedback to update its
output, as we see in Figure 5-1. In both cases, the output depends not only on current information

1 See my previous book Real-Time UML Third Edition: Advances in the UML for Real-Time Systems (Addison-
Wesley, 2004) for more detailed information. We won’t deal with all of the rich semantics available in UML state
machines in this book.

260 Chapter 5

Kb

Vn ZnWnYnXn
Ka Delay

+
++

–

Figure 5-1: Simple PID control loop

but also on previous information, but it does so in a smooth, continuous way. Put another way,
the output varies in value but not in kind as a function of new data and the system history.

The third kind of behavior, to which this is dedicated, is discontinuous or stateful behavior. In
stateful systems. the behavior depends on the new data (typically incoming events of interest) and
the current state of the system, which are determined by that system’s history. However, the
difference is the kind of actions the system performs not the value of the outputs. In Figure 5-2, we
see a state machine for a microwave oven. The history of the system is represented in the states and
the behaviors are the actions, such as initialize() (executed on entry into the state Ready)
and timeTocook -= currentTime() (executed on the transition from Microwaving to

Figure 5-2: Stateful behavior

Table 5-1: State transition table

State 1 State 2 State 3

Design Patterns for State Machines 261

the DoorOpen or Paused states). The important thing to note here is that the kind of actions the
system performs varies on the basis of its state (and therefore on its history). Microwaves are only
emitted in the Microwaving state; the system is only initialized in the Ready state, and so on.

The state machine may also be visualized as a state x transition table, such as Table 5-1. Many
people prefer this notation. It has some advantages but, as you can see, the actual behaviors are not
shown in the table. Instead, the rows indicate the current state and the columns are the transitions;
in the cells of the table are the next states after the events are processed by the state machine.

State machines are an extremely powerful means by which the behavior of a complex,
embedded system can be controlled and orchestrated. As mentioned, it will be the subject of
this and the next chapters.

Lastly, the fourth type of behavior is a combination of the previous two, known as piece-wise
continuous behavior (see Figure 5.3). In PC behavior, within a state, continuous (and, for that
matter, simple) the behaviors that occur are of the same kind, but between states, different kinds
of behaviors occur. A simple example of this is using different sets of differential equations
depending on the state of the system.

5.2 Basic State Machine Concepts
A Finite State Machine (FSM) is a directed graph composed of three primary elements: states,
transitions, and actions. A state is a condition of a system or element (usually a class in an object-
oriented system). Looking back to , the element is the microwave oven (or at least the collection of
elements involved in cooking) and the states are the conditions of that system – Off, Ready,
Microwaving, DoorOpen, and Paused. Usual names for states are verbs, adverbs, and verb
phrases.

Figure 5-3: Piece-wise continuous behavior

262 Chapter 5

A transition is a path from one state to another, usually initiated by an event of interest; it
connects a predecessor state with a subsequent state when the element is in the predecessor
state and receives the triggering event. The events of interest in Figure 5-2 include the
powerOn, timedCook, doorOpen, cancel, pause, resume, and tm (timeout) events. If an
event occurs while the element is in a state that doesn’t respond to that particular event, the
event is “quietly discarded” with no effect – that is, state machines only make affirmative
statements “When I’m in this state and this occurs, I’ll do this”) not negative statements (“If I’m
not in this state or this doesn’t happen, then I’ll do that”). Events not explicitly handled within a
state are discarded should they occur when the element is in that state.

The actual behaviors executed by the element are represented in actions. In UML state machine,
actions may be associated with entry into a state, exit from a state, a transition per se, or what is
called an “internal transition” (we will get into this in more detail shortly). Actions are specified in
an action language, which for us will be C. Actions shown on Figure 5-2 include initialize(),
emitMicrowaves(), stopEmittingMicrowaves(), and timeToCook -= currentTime().

Figure 5-4 shows the basic syntax for UML state machines. The rounded rectangles represent
the states of the element. The element remains in a state until a transition causes it to change
state. Within a state, three annotations may be made. Entry actions are actions the element
executes when the state is entered regardless of which transition path was taken (it is possible to

Figure 5-4: Basic state machine syntax

Design Patterns for State Machines 263

make many different transitions terminate on any given state). The exit actions are actions taken
whenever the state is left, regardless of which path is taken. Reactions (“internal transitions”)
are taken when the element is in the specified state and the triggering event occurs; in this case,
the actions are taken but the state is not exited. Contrast the PredecessorState response
to the event react1 with the transition taken with event2. In both cases, the element ends up in
the same state (PredecessorState), but in the former case, only the actions rAction1()

and rAction2() are executed. In the latter case, the exit actions (in this case exitAction())
are taken, then the transition actions (in this case tAction2()), and finally the entry actions
are taken (in this case entry1() and entry2()).

Transitions are shown as directed arrows. They are normally initiated by the element receiving
a triggering event. Transitions have three syntactic fields with three special characters deli
miting them. The first field is the event name; this is the name of the event type that causes this
transition to be taken (provided, of course, that the element is in the predecessor state when the
event occurs). The second field is known as the guard. The guard is a Boolean condition
(without side effects!); if the event occurs AND the guard evaluates to true, then the transition is
taken. If the event occurs and the guard is false, then the event is “quietly discarded” and no
actions are taken, including the exit actions of the predecessor state. This means that the guard,
if present, must be evaluated before any actions are executed. The guard, when present, is
delimited by square brackets. Lastly, there may be a list of actions that are executed when the
transition is taken. The action list is preceded by a slash mark.

It should be noted that all of these fields are optional. When the triggering event is missing
(known sometimes as an “anonymous transition”), then the transition is triggered as soon as the
element enters the predecessor state, that is, as soon as the entry actions for the predecessor
state are completed. If the anonymous transition has a guard that evaluates to false, then the
anonymous event is discarded and the element remains in the predecessor state even if the
guard condition should later become true.

There is a special kind of transition, known as the initial transition (or “default pseudostate” if
you want to be fancy) that indicates the starting state and actions when the element is created.
This transition may not have a triggering event.

There is a special state, known as the final pseudostate, that indicates the element no longer
accepts events. Usually, this means that the element is about to be deleted. The icon for the final
state is a filled circle within an unfilled circle. In Figure 5-4, the pseudostate is entered when the
element is in the SubsequentState and the element receives the done event.

5.2.1 OR-States

In simple state machines, an element must always be in exactly one of its states, no more and no
less. For this reason, such states are called OR-states. UML state machines extend the notion of
OR-states by adding the notion of nesting within states. Nested states add a level of abstraction

264 Chapter 5

 Figure 5-5: OR-states2

to the FSM world and this requires a minor modification to the basic rule: the element must be
in exactly one state at each level of abstraction.

Figure 5-5 shows some nested states for the monitoring part of a home alarm system. The
system must either be Off or Armed – no other conditions are possible. If it is Armed, then it
must either be in the ExitingHouse or ActivelyMonitoring states. And, if it is
ActivelyMonitoring, then it must be in exactly one of the following states: Detecting,
EnteringHouse, Intrusion, or Silence.

There are a few interesting things to note. First, there must be a default pseudostate at every
level of abstraction and it indicates the default state when that level of abstraction is entered.
This default can be bypassed when desired, however. If you take the “default” transition path
from the Off state via the evImmediateActivation transition, the system ends up in the
Armed::ActivelyMonitoring::Detecting state. However, if the user activates the alarm
from inside the house, the system gives them a couple of minutes to get out of the house before
beginning detecting – this is the evDelayedActivation transition path. Also note that
regardless of which deeply nested state of Armed the system is in, when the system is deactivated

2 Thanks to Mark Richardson of LDRA for the idea of this state machine example.

Table 5-2: OR-state table

Design Patterns for State Machines 265

via the evDisarm transition, the system transitions to the Off state. This transition can be activated
whenever the system is in the Armed state, regardless of which nested state it is currently in.

As a side note, the state diagram in Figure 5-5 can also be shown in tabular form, as it is in Table 5-2.

5.2.2 AND-States

Sometimes state machines are complex in the sense that they have independent (or at least
mostly so) aspects. Consider the state machine for a light that has two independent aspects;
color (Off, Red, Yellow, and Green) and display style (Off, Steady, Flashing Slowly,
and Flashing Quickly). How many states of this light are there? If you look at Figure 5-6,

Figure 5-6: Light states

266 Chapter 5

you see that there are 10. Further, in this light, it is possible to go from any of these states to any
other. The figure shows one source state going to all other states (Red_Steady) and one target
state receiving transitions from all other states (Off); you can imagine the rat’s nest that would
result from actually drawing all transition paths.

You can see that to consider all the states of the independent aspects, you must multiply the
independent state spaces together, resulting in a possibly enormous set of states (imagine now
adding a third independent aspect, brightness – low, medium, and high – into the mix). This
problem is so common it even has a name – state explosion. UML state machines have a
solution to the state explosion problem – AND-states.

AND-states are special independent states that are always nested inside other states. The
special rule for AND-states is that the element must be in exactly one of each active
AND-state at each level of abstraction. In the case of the light, we’ll have one AND-state
for color and another for display rate. You can see that this simplifies the problem so much
that we have no problem representing all the transitions in the state machine even though
we couldn’t before (and maintain any semblance of readability). This is shown in
Figure 5-7. The dashed line in the middle of the On state is an AND-line and separates the
two AND-states.

Figure 5-7: Light AND-states

Table 5-3: Light AND-state table

Design Patterns for State Machines 267

And, yes, the state machine in Figure 5-7 can also be shown in a table. See Table 5-3. You just
have to pay special attention to the icon of the On state to notice that the nested states are AND-
states and not OR-states to correctly interpret the table.

5.2.3 Special Stuff: Timeouts, Conditionals, and More

All FSMs can be ultimately reduced to the core elements discussed above. However, the UML
standard adds a number of syntactic elements that simplify representing complex situations.
Most of these fall into the category of pseudostates, an unfortunate name for a set of annota
tions that are in no way states, but are nonetheless useful.

First, let’s discuss timeouts semantics. The UML has the notion that elapsed time is a kind of
event that can cause a change of state in a state machine. The notation for this is normally either
tm(<time interval>) or after(<time interval>). The way to think about a timeout
transition is as follows. When entering a state that has an exiting timeout transition, a logical
timer begins as soon as the state is entered (i.e., as soon as the state’s exit actions complete). If
the element is still in the state when the timeout expires, then the transition triggered by the
timeout fires. If the element leaves that state and reenters it later, the timer starts over from zero.

The state machine in Figure 5-8 shows how timeout transitions might be used. When the system
is created, it begins in the Off state. Once it receives the start event, the system transitions to the
Waiting state. In WAIT_TIME milliseconds later3, the system transitions to the DoneWaiting

state. Let’s suppose that WAIT_TIME is set to 1000 milliseconds. If the system remains in the
Waiting state for a full second, then it will transition to the DoneWaiting state. However, let’s
suppose that 950 ms after entering the Waiting state, the system receives the pause event; in this
case, the timer (logically) disappears and the system enters the Paused state. If, two days later,
the system receives the resume event, it will transition back to the Waiting state and resume
timing, but it will again wait a full second before timing out. Similarly, let’s set QUIT_TIME to

3	 Milliseconds are the most common units for state implementation and will be used here, but you are free to use
whatever timing resolution makes sense for you.

268 Chapter 5

Figure 5-8: Timeouts

20,000 ms. We can effectively reset the system by issuing the resetQuitTime event. Let’s
suppose the system is in the Paused state and the QUIT_TIME timer has counted down 10,000 ms.
What happens then?

The transition triggered by the resetQuitTime causes the system to reenter the WaitingState

with the WAIT_TIME counter starting over and the QUIT_TIME counter also restarted. What if
we want to reenter the Paused state? UML has a solution for that concern too – the history
pseudostate.

The UML provides a number of pseudostates but we will only discuss the most common of these:

•	 Default pseudostate – identifies the starting state for a system or within a level of abstraction
•	 Conditional pseudostate – shows branch points where a transition may terminate on

different target states and/or have different actions depending on the results of guards
•	 Fork pseudostate – allows bypassing the defaults when going into a composite with AND

nested states
•	 Join pseudostate – allows specific nested AND-states as source states for an exit from a

composite state with AND nested states
•	 History pseudostate – sets the default nested state to be the “last active” nested state
•	 Final pseudostate – indicates that the state machine no longer receives events, usually

because it is about to be destroyed

Figure 5-9 shows these different annotations. The default and final pseudostates we’ve seen
before. The conditional pseudostate is activated while the system is in the Ready state and the go

event is received. If the guard useDefaults() returns TRUE, then the default nest AND-states

Design Patterns for State Machines 269

Figure 5-9: Pseudostates

are entered. Alternatively, if it is FALSE, the (optional) else clause routes the transition to the
WaitingForSelectedStartingPoint state. If used, the else clause path is taken if and only
if all other branching guards are FALSE. If all the guards evaluate to FALSE (impossible if the else
clause is included), then the event is discarded without taking a transition.

The fork is used between the WaitingForSelectedStartingPoint and the MovingRobotArm

states. In this case, the system bypasses the defaults (taken in the go [useDefaults()] transition)
and instead transitions to two nondefault states inside the MovingRobotArm composite state.

Similarly, a join occurs between the ZeroXMotor and ZeroYMotor nested AND-states on one
side and the SafetyFailState on the other. That means that the system must be in both the
predecessor states AND the event failuretoZero must occur; if the system is in any other
condition, the event is discarded.

Lastly, the history pseudostate is used to return to the last active nested state. In the example,
when the system is in the MovingRobotArm state and receives the event pause, it transitions to
the Paused state. A subsequent resume event will return to the same nested states the system

270 Chapter 5

was in when it was in the MovingRobotArm state. For example, imagine the system is in the
ZeroXMotor and MoveToYPosition states when the pause occurs. With the resume event,
the system will return to those two states. Without the history state, it would return to the
ZeroXMotor and ZeroYMotor nested states, since they are the defaults.

5.2.4 Synchronous versus Asynchronous?

A synchronous event is activated by a call to an operation on the target state machine and the
caller waits (blocked) until the state machine completes its response to the event. In contrast, an
asynchronous event is sent via a send-and-forget mechanism by the sender and the sender may
continue on regardless of the actions of the target state machine.

The state machine itself doesn’t care how the event arrives, but must handle the event in either
case. This means that to avoid race conditions, synchronous state machines must block callers
(using the Guarded Call or Critical Region Patterns of the previous chapter) and asynchronous
state machines must use queuing to store their events until they can be handled. While a state
machine can handle both synchronous and asynchronous events, a given state machine usually
handles one or the other but not both to eliminate potential race conditions.

We really want to be able to have the system respond in the same way to the same sequence of
events; such a system is said to have deterministic semantics. There are a couple of conditions
under which determinism is threatened with which any good implementation of a state machine
must deal.

What should happen, for example, if a state machine is in the middle of executing an action and
an incoming event occurs? Should the state machine stop immediately and handle the event? The
answer, of course, is no. The state machine must be idle and waiting for events before handling a
new one. Mealy-Moore state machines “handle” this by assuming that actions take zero time,
a proposition that is not only clearly false but also complicates timing analysis. The UML has a
different answer – run-to-completion semantics. That is, actions may take time, but any pending
events must wait until the state machine has completed the entire exit action-transition action-
entry action sequence. The problem is simplified if asynchronous events are used, since the
delivery mechanism for the event can be triggered when the state machine enters a state. For
synchronous events in the presence of multiple threads, though, the action sequence must block
any attempt to invoke an event receptor operation until the action executions are complete.

Let’s consider the basic elements of both synchronous and asynchronous state machines.

For a synchronous state machine, the owning element of the state machine will provide one or
more event handler functions. The most obvious way to handle the deterministic semantics
problem is to lock the semaphore when the event receptor is called and unlock it when the event
receptor returns.

Design Patterns for State Machines 271

Figure 5-10: Synchronous state machine basic interaction model

Figure 5-10 shows this basic model. In the figure, the SynchronousStateMachine has a
single stateVariable (of an enumerated type STATETYPE, although most people just
encode this with integers) to track the current state of the FSM. It also has a single function
dispatchEvent that receives the event and any data that it passes. The basic flow of logic for
the function would be:

Mutex_lock(me->itsMutex);

/* perform list of actions */

/* update stateVariable */

Mutex_release(me->itsMutex);

Code Listing 5-1: Basic dispatchEvent Flow

Figure 5-11 shows the basic form for an asynchronous state machine. The first difference you
see is that the client actually sends events to the queue via the post() operation and then
queues them. This locks the queue’s mutex, stores it in the queue, unlocks its Mutex, calls the
dispatchEvent on the AsynchronousStateMachine and returns. Code Listing 5-2
shows the basic flow for the post() function.

Mutex_lock(me->itsMutex);

insert(ev); /* insert into the queue */

272 Chapter 5

Figure 5-11: Asynchronous state machine basic interaction model

Mutex_release(me->itsMutex);

AsynchronousStateMachine_dispatchEvent(ev);

Code Listing 5-2: Basic post flow

This ensures that the AsynchronousStateMachine is notified when an event is posted (note
that the Mutex associated with the AsynchronousStateMachine protects any active action
sequence from interruption). Note that we expect the mutex in Figure 5-11 to be a recursive mutex
(see the discussion in the previous chapter) so that the EventQueue can invoke (and be blocked
by) the Mutex associated with the AsynchronousStateMachine as many times as necessary.

The EventType referenced in Figure 5-11 may be a simple enumerated type or something more
complex. If you want to pass data along with the event, then it needs to be a struct (usually with a
union clause) to hold the data. That is because the type must be stored within an event queue
regardless of the size and subcomponents of the data being passed. In the case of a synchronous

Design Patterns for State Machines 273

state machine, this can be encoded directly in the various event receptors’ argument lists.
For example, the follow code snippet shows the definition of three event receptors for a
synchronous state machine that each take different arguments:

void event1(FSM* me); /* no arguments */

void event2(FMS* me, int n, double torque); /* two scalar arguments */

void event3(FSM* me, struct NavData* nd); /* pointer to struct */

Code Listing 5-3: Event receptor data passing

Note that because the synchronous state machine can call a specific function for each different
event separately, there is no need to encode the event type explicitly, unlike the case in which
events must be queued for later consumption.

The above discussion is applicable regardless of exactly how we implement the state machine.
Let us now turn our attention to different implementation patterns for finite state machines. In
all cases, we will implement the state machine shown in Figure 5-12. This state machine
implements a simple parser for input characters and computes a numeric result. This works for
such character strings as “12.34” and “.1234”).

It is assumed that the client has already determined, on a character-by-character basis, whether
the character is a digit (‘0’ to ‘9’), a dot (‘.’) or whitespace (‘ ‘, or ‘\t’) and has generated one of

Figure 5-12: Example state machine

274 Chapter 5

the events accordingly. For multiple receptors, the client will generate one of the following
events: evDigit (passing the character as a parameter), evDot, evWhiteSpace, or
evEndOfString. For a single event receptor, there will be a single event evChar and it will
have to carry data of the character itself. It is easy enough to make the character type
identification within the state machine but it is left as an exercise to the reader.

5.3 Single Event Receptor Pattern
Single event receptor state machines (henceforth known as SERSMs) can be used for both
synchronous and asynchronous events.

5.3.1 Abstract

The Single Event Receptor Pattern relies on a single event receptor to provide the interface
between the clients and the state machine. Internally, this single event receptor must accept an
event data type that not only identifies which event has occurred but also any data that
accompanies the event. This pattern may be used in synchronous state machines – receiving
events directly from the clients – or asynchronous, via an intermediate event queue.

5.3.2 Problem

This pattern addresses the problem of providing simple implementation of a state machine that
applies to both synchronous and asynchronous event delivery.

5.3.3 Pattern Structure

This pattern can be used in two ways – for either asynchronous or for synchronous state
machines. The asynchronous version context for this pattern is shown in Figure 5-13. In this
case, it should be noted that at the end of the TSREventQueue_post() function, the OS
function postSignal() is called. The code for the post() function is given in Code Listing 5
4. On the state machine side, the asynchronous version of the state machine receptor class has a
task loop that waits for the signal, indicating that an event has been queued, and then iterates
over all queued events. That code is shown in Code Listing 5-5.

The synchronous version of the pattern is shown in Figure 5-14. The most notable differences
between the two is the absence of the event queue and that the class that owns the state machine
TokenizeSyncSingleReceptor has an association to a mutex to ensure run-to-completion
semantics for the state machine actions. Note that the state machine class has many operations but
the only one called by the client is TokenizerSyncSingleReceptor_eventDispatch().
Internally, this function will determine which event is being passed and process the incoming
event.

Design Patterns for State Machines 275

Figure 5-13: Single event receptor state machine context for asynchronous events

5.3.4 Collaboration Roles

This section describes the roles for this pattern.

5.3.4.1 Event
The event is a struct that contains an attribute to identify the type of the event and other data
that is passed along with the different events. This is normally implemented as a union in C.

5.3.4.2 EventType
The EventType is an enumerated type for the events. Alternatively, ints can be used but I
recommend enums as being more informative.

276 Chapter 5

Figure 5-14: Single event receptor state machine context for synchronous events

5.3.4.3 Mutex
For the asynchronous version of the state machine, the Mutex ensures the integrity of the
TSREventQueue in the case that multiple clients are simultaneously trying to post events or if
a client tries to post an event while the state machine class is removing one.

For the synchronous version of the pattern, the mutex ensures the deterministic run-to-com
pletion semantics of transitions by preventing other clients from interrupting the state machine
execution of an action sequence. This is accomplished by locking the semaphore before the
event is processed and releasing it once the transition processing is complete.

5.3.4.4 TokenizerAsyncSingleReceptor
This element is the owner and implementer of the desired state machine (see Figure 5-12). It
has two kinds of attributes: those involved with the intent of the state machine (such as result)

Design Patterns for State Machines 277

and those involved with the management of the state machine (such as stateID). Of the former
type, we find:

•	 result which holds the current value of the number being parsed
•	 tensPlace which is used in computing fractional parts of numbers, as in 0.345 of the

number 10.345
•	 ch which holds the current character being processed

Of the latter type, we see:

•	 stateID which stores the current high level state (NULL_STATE, NONUMBER_STATE, or
GOTNUMBER_STATE)

•	 subStateID which stores the current substate (NULL_SSTATE,

PROCESSINGWHOLEPART_SSTATE, or PROCESSINGFRACTIONALPART_SSTATE)

These values are defined in the enumerated types TSTATETYPE and TSUBSTATETYPE,
respectively.

Functions of this state machine are likewise of three types. The first is the task loop that
pends on the signal (which is posted when an event is enqueued). The second is the
eventDispatch that identifies and processes the event. The third type of operations are for
the entry and exit actions of the states. Note that the transitions actions are all embedded
within the event-receptors since they only occur once, but there are often many paths into
and out of a state, so we explicitly create entry and exit functions for each state, making
them reusable.

5.3.4.5 TokenizerSyncSingleReceptor
This class is exactly like the previously described TokenizerAsyncSingleReceptor

except that 1) it does not have a task loop because it is invoked synchronously, and 2) it uses a
mutex to enforce run-to-completion semantics of its state machine. The only function directly
invoked by the client is TokenizerSyncSingleReceptor_eventDispatch().

5.3.4.6 TSRClient
This is the client of the state machine. For the asynchronous version, it queues the event by calling
TSREventQueue_post() function using an instance of the event type as the passed parameter.
For the synchronous case, it invokes the single event receptor TokenizerSyncSingleReceptor

and passes the appropriate event (and associated data) as typed with the event type.

5.3.4.7 TSREventQueue
This is a queue that holds events. It is only used in the asynchronous event processing case, to
hold the incoming events until the state machine gets around to processing them. It provides
two primary functions. The TSREventQueue_post() function enqueues an event and signals

278 Chapter 5

the OS that an event has arrived. The TSREventQueue_pull() function is invoked by the
TSRAsyncSingleReceptor class to get the next pending event.

5.3.4.8 TSTATE
TSTATE is an enumerated type of the high-level states.

5.3.4.9 TSUBSTATE
TSUBSTATE is an enumerated type of the nested states. In this case, there are only two levels of
nesting. If there were more, then more enumerated types could be added.

5.3.5 Consequences

This pattern provides a straightforward state machine implementation easily adapted to either
synchronous or asynchronous state machine event passing. The fact that all the state logic is
encapsulated within a single event receptor limits the scalability of the approach.

5.3.6 Implementation Strategies

It should be noted that one way of implementing this pattern is by simply taking a Multiple
Event Receptor Pattern and adding a single publicly available event receptor (to be invoked by
clients) that calls the multiple event receptors already present. You’ll still need to create the
abstract event type to be passed into the single event receptor. This is one way to take a
synchronous state machine done using that pattern and enabling it to be used in an asynchro
nous way – add an event queue, a polling mechanism to look for new events, a single event
receptor and you can use it without other modification.

A more common implementation of the Single Event Receptor Pattern is to encode all the logic
in a big switch-case statement within the single event receptor.

5.3.7 Related Patterns

The synchronous version of the pattern uses the Guarded Call Pattern (see Chapter 4) to ensure
deterministic run-to-completion of transitions while the asynchronous version uses the Queuing
Pattern. The Critical Region Pattern can be used instead for either synchronous or asynchro
nous state machines to ensure the run-to-completion semantics.

5.3.8 Example

The asynchronous version differs in a couple of ways from the synchronous version. First, let’s
consider what is special about the asynchronous version.

The most obvious difference is, of course, the presence of the TSREventQueue. The clients
don’t invoke the event receptor on the state machine directly; instead they send the events to the
event queue, which then posts the signal to the OS on which the state machine pends (see Code

Design Patterns for State Machines 279

Listing 5-4). The state machine class has its own task processing loop that waits for the signal to
be posted, and when it is, loops to remove and process all events that are currently queued
(Code Listing 5-5).

int TSREventQueue_post(Event e) {

Mutex_lock(me->itsMutex);

if (!TSRQueue_isFull(me)) {

me->q[me->head] = e;

me->head = (me->head + 1) % QSIZE;

me->size += 1;

Mutex_release(me->itsMutex);

postSignal(); /* signal that an event is present */

return 1;

}
else {

Mutex_release(me->itsMutex);

return 0;

};

};

Code Listing 5-4: TSREventQueue_post() function

void TokenizerAsyncSingleReceptor_taskLoop() {
while (1) {

waitOnSignal(); /* wait until event occurs */

while (! TSREventQueue_isEmpty(me->itsTSREventQueue)) {

TokenizerAsyncSingleReceptor_eventDispatch(

TSREventQueue_pull(me->itsTSREventQueue));

}

}

}

Code Listing 5-5: TokenizeAsyncSingleReceptor_taskLoop() function

Code Listing 5-1 shows the enumerated types and other definitions used by the elements of the
pattern.

/* this is the size of the event queue */

#define QSIZE 100

typedef enum EventType {

EVDIGIT,

EVDOT,

EVWHITESPACE,

EVENDOFSTRING

} EventType;

typedef struct {

EventType eType;

union eventData {

char c;

} ed;

280 Chapter 5

} Event;

typedef enum TSTATETYPE {

NULL_STATE,

NONUMBER_STATE,

GOTNUMBER_STATE

} TSTATETYPE;

typedef enum TSUBSTATETYPE {

NULL_SSTATE,

PROCESSINGWHOLEPART_SSTATE,

PROCESSINGFRACTIONALPART_SSTATE

} TSUBSTATETYPE;

/* helper function returns the digit */

/* held by a char */

int digit(char c) {

return c-'0';

}

/*

OS signal and wait functions for

task synchronization

*/

void postSignal(void);

void waitOnSignal(void);

Code Listing 5-6: TokenizeAsyncSinglePkg.h

Code Listing 5-7 and Code Listing 5-8 show the code for the event queue used in the pattern.

#include "TokenizerAsyncSinglePkg.h"

struct Mutex;

typedef struct TSREventQueue TSREventQueue;
struct TSREventQueue {

Event q[100];

int size;

int head;

int tail;

struct Mutex* itsMutex;

};

/* Constructors and destructors:*/

void TSREventQueue_Init(TSREventQueue* const me);

void TSREventQueue_Cleanup(TSREventQueue* const me);

/* Operations */

void TSREventQueue_isEmpty(TSREventQueue* const me);

int TSREventQueue_isFull(TSREventQueue* const me);

/* puts the passed event in */

/* the event queue and then */

Design Patterns for State Machines 281

/* calls the event receptor of */

/* the state machine. Note */

/* if the queue overflows an */

/* error code (1) is returned. */

int TSREventQueue_post(TSREventQueue* const me, Event e);

/* It is assumed that the caller has */

/* ensured that there is at least one */

/* event in the queue (via the isEmpty() */

/* funtion) prior to calling this function. */

/* Otherwise they get a default event. */

Event TSREventQueue_pull(TSREventQueue* const me);

struct Mutex* TSREventQueue_getItsMutex(const TSREventQueue* const me);

void TSREventQueue_setItsMutex(TSREventQueue* const me, struct Mutex* p_Mutex);

TSREventQueue * TSREventQueue_Create(void);

void TSREventQueue_Destroy(TSREventQueue* const me);

#endif

Code Listing 5-7: TSREventQueue.h

#include "TSREventQueue.h"

#include "Mutex.h"

static void cleanUpRelations(TSREventQueue* const me);

void TSREventQueue_Init(TSREventQueue* const me) {

me->head = 0;

me->size = 0;

me->tail = 0;

me->itsMutex = NULL;

}

void TSREventQueue_Cleanup(TSREventQueue* const me) {

cleanUpRelations(me);

}

void TSREventQueue_isEmpty(TSREventQueue* const me) {

return me->size <= 0;

}

int TSREventQueue_isFull(TSREventQueue* const me) {

return me->size >= QSIZE-1;

}

/* post enqueues an event and signals that fact */
int TSREventQueue_post(TSREventQueue* const me, Event e) {

Mutex_lock(me->itsMutex);

if (!TSRQueue_isFull(me)) {

me->q[me->head] = e;

me->head = (me->head + 1) % QSIZE;

me->size += 1;

Mutex_release(me->itsMutex);

282 Chapter 5

postSignal(); /* signal that an event is present */

return 1;

}

else {

Mutex_release(me->itsMutex);

return 0;

};

}

/* pulls removes the oldest event from the queue */

/* pull should only be called when there is an event waiting */

Event TSREventQueue_pull(TSREventQueue* const me) {

Event e;

Mutex_lock(me->itsMutex);

if (!TSREventQueue_isEmpty(me)) {

e = me->q[me->tail];

me->tail = (me->tail + 1) % QSIZE

size -= 1;

};

Mutex_release(me->itsMutex);

return e;

}

struct Mutex* TSREventQueue_getItsMutex(const TSREventQueue* const me) {

return (struct Mutex*)me->itsMutex;

}

void TSREventQueue_setItsMutex(TSREventQueue* const me, struct Mutex* p_Mutex) {

me->itsMutex = p_Mutex;

}

TSREventQueue * TSREventQueue_Create(void) {

TSREventQueue* me = (TSREventQueue *) malloc(sizeof(TSREventQueue));

if(me!=NULL)

TSREventQueue_Init(me);

return me;

}

void TSREventQueue_Destroy(TSREventQueue* const me) {

if(me!=NULL)

TSREventQueue_Cleanup(me);

free(me);

}

static void cleanUpRelations(TSREventQueue* const me) {

if(me->itsMutex != NULL)

me->itsMutex = NULL;

}

Code Listing 5-8: TSREventQueue.c

Of course, the real action here takes place in the class with the state machine. In this case, we’ll
show just the code for the asynchronous version in Code Listing 5-9 and Code Listing 5-10.

Design Patterns for State Machines 283

#include <stdio.h>

#include "TokenizerSyncSingleReceptorPkg.h"

struct Mutex;

typedef struct TokenizerSyncSingleReceptor TokenizerSyncSingleReceptor;

struct TokenizerSyncSingleReceptor {
char ch;
double result;
TSTATETYPE stateID;
TSUBSTATETYPE subStateID;
double tensPlace;
struct Mutex* itsMutex;

};

void

TokenizerSyncSingleReceptor_enter_GotNumber(TokenizerSyncSingleReceptor* const me);

void

TokenizerSyncSingleReceptor_enter_NoNumber(TokenizerSyncSingleReceptor* const me);

void

TokenizerSyncSingleReceptor_enter_ProcessingFractionalPart(TokenizerSyncSingleRe

ceptor* const me);

void

TokenizerSyncSingleReceptor_enter_ProcessingWholePart(TokenizerSyncSingleReceptor*

const me);

void

TokenizerSyncSingleReceptor_exit_GotNumber(TokenizerSyncSingleReceptor* const me);

void

TokenizerSyncSingleReceptor_exit_NoNumber(TokenizerSyncSingleReceptor* const me);

void

TokenizerSyncSingleReceptor_exit_ProcessingFractionalPart(TokenizerSyncSingleRecep

tor* const me);

void

TokenizerSyncSingleReceptor_exit_ProcessingWholePart(TokenizerSyncSingleReceptor*

const me);

void

TokenizerSyncSingleReceptor_Init(TokenizerSyncSingleReceptor* const me);

void

TokenizerSyncSingleReceptor_Cleanup(TokenizerSyncSingleReceptor* const me);

void

TokenizerSyncSingleReceptor_eventDispatch(TokenizerSyncSingleReceptor* const me,

Event e);

struct Mutex* TokenizerSyncSingleReceptor_getItsMutex(const TokenizerSyncSingleRecep
tor* const me);

void

TokenizerSyncSingleReceptor_setItsMutex(TokenizerSyncSingleReceptor* const me, struct

Mutex* p_Mutex);

284 Chapter 5

TokenizerSyncSingleReceptor *

TokenizerSyncSingleReceptor_Create(void);

void

TokenizerSyncSingleReceptor_Destroy(TokenizerSyncSingleReceptor* const me);

#endif

Code Listing 5-9: TSRSyncSingleReceptor.h

#include "TSRSyncSingleReceptor.h"

#include "Mutex.h"

void
TokenizerSyncSingleReceptor_enter_GotNumber(TokenizerSyncSingleReceptor* const me) {
me->tensPlace = 10.0;

}

void
TokenizerSyncSingleReceptor_enter_NoNumber(TokenizerSyncSingleReceptor* const me) {
me->result = 0.0;

}

void
TokenizerSyncSingleReceptor_enter_ProcessingFractionalPart(TokenizerSyncSingle
Receptor* const me) {

/* enter appropriate actions, if any here */

}

void
TokenizerSyncSingleReceptor_enter_ProcessingWholePart(TokenizerSyncSingleReceptor*
const me) {
me->result = me->result*10 + digit(me->ch);

}

void
TokenizerSyncSingleReceptor_exit_GotNumber(TokenizerSyncSingleReceptor* const me) {
me->subStateID = NULL_SSTATE;

}

void
TokenizerSyncSingleReceptor_exit_NoNumber(TokenizerSyncSingleReceptor* const me) {

/* enter appropriate actions, if any here */
}

void

TokenizerSyncSingleReceptor_exit_ProcessingFractionalPart(TokenizerSyncSingle

Receptor* const me) {

/* enter appropriate actions, if any here */

}

void
TokenizerSyncSingleReceptor_exit_ProcessingWholePart(TokenizerSyncSingleReceptor*
const me) {
/* enter appropriate actions, if any here */

}

Design Patterns for State Machines 285

void
TokenizerSyncSingleReceptor_Init(TokenizerSyncSingleReceptor* const me) {
me->ch = 'x';
me->result = 0.0;
me->tensPlace = 10.0;
me->itsMutex = NULL;

me->stateID = NONUMBER_STATE;
me->subStateID = NULL_SSTATE;

}

void

TokenizerSyncSingleReceptor_eventDispatch(TokenizerSyncSingleReceptor* const me,

Event e) {

Mutex_lock(me->itsMutex);

switch (e.eType) {

case EVDIGIT:

switch (me->stateID) {

case NONUMBER_STATE:

/* transition to GotNumber state, default substate */

TokenizerSyncSingleReceptor_exit_NoNumber(me);

me->ch = e.ed.c;

TokenizerSyncSingleReceptor_enter_GotNumber(me);

me->stateID = GOTNUMBER_STATE;

TokenizerSyncSingleReceptor_enter_ProcessingWholePart(me);
me->subStateID = PROCESSINGWHOLEPART_SSTATE;
printf("Current value of result: %g\n", me->result);
break;

case GOTNUMBER_STATE:

switch (me->subStateID) {

case PROCESSINGWHOLEPART_SSTATE:

TokenizerSyncSingleReceptor_exit_ProcessingWholePart(me);
me->ch = e.ed.c;

TokenizerSyncSingleReceptor_enter_ProcessingWholePart(me);
printf("Current value of result: %g\n", me->result);
break;

case PROCESSINGFRACTIONALPART_SSTATE:

TokenizerSyncSingleReceptor_exit_ProcessingFractionalPart(me);
me->ch = e.ed.c;
me->result += digit(me->ch) / me->tensPlace;
me->tensPlace *= 10.0;

TokenizerSyncSingleReceptor_enter_ProcessingFractionalPart(me);
printf("Current value of result: %g\n", me->result);
break;

};

};

break;

case EVDOT:

me->ch = ’.’;

286 Chapter 5

switch (me->stateID) {

case NONUMBER_STATE:

/* transition to GotNumber state, default substate */

TokenizerSyncSingleReceptor_exit_NoNumber(me);

TokenizerSyncSingleReceptor_enter_GotNumber(me);

me->stateID = GOTNUMBER_STATE;

TokenizerSyncSingleReceptor_enter_ProcessingFractionalPart(me);
me->subStateID = PROCESSINGFRACTIONALPART_SSTATE;

break;
case GOTNUMBER_STATE:

switch (me->subStateID) {
case PROCESSINGWHOLEPART_SSTATE:

TokenizerSyncSingleReceptor_exit_ProcessingWholePart(me);

TokenizerSyncSingleReceptor_enter_ProcessingFractionalPart(me);
me->subStateID = PROCESSINGFRACTIONALPART_SSTATE;
break;

};
};

break;

case EVWHITESPACE:

case EVENDOFSTRING:

switch (me->stateID) {

case GOTNUMBER_STATE:

switch (me->subStateID) {

case PROCESSINGWHOLEPART_SSTATE:

TokenizerSyncSingleReceptor_exit_ProcessingWholePart(me);
break;

case PROCESSINGFRACTIONALPART_SSTATE:

TokenizerSyncSingleReceptor_exit_ProcessingFractionalPart(me);
break;

};

TokenizerSyncSingleReceptor_exit_GotNumber(me);

printf("Number: %g\n", me->result);

TokenizerSyncSingleReceptor_enter_NoNumber(me);

me->stateID = NONUMBER_STATE;

break;

};
break;

}; // end switch e.eType
Mutex_release(me->itsMutex);

}

struct Mutex* TokenizerSyncSingleReceptor_getItsMutex(const TokenizerSyncSingleReceptor*
const me) {
return (struct Mutex*)me->itsMutex;

}

void
TokenizerSyncSingleReceptor_setItsMutex(TokenizerSyncSingleReceptor* const me, struct
Mutex* p_Mutex) {

Design Patterns for State Machines 287

me->itsMutex = p_Mutex;

}

TokenizerSyncSingleReceptor *
TokenizerSyncSingleReceptor_Create(void) {
TokenizerSyncSingleReceptor* me = (TokenizerSyncSingleReceptor *) malloc(sizeof

(TokenizerSyncSingleReceptor));

if(me!=NULL)

TokenizerSyncSingleReceptor_Init(me);

return me;

}

void
TokenizerSyncSingleReceptor_Destroy(TokenizerSyncSingleReceptor* const me) {

if(me!=NULL)

TokenizerSyncSingleReceptor_Cleanup(me);

free(me);

}

static void cleanUpRelations(TokenizerSyncSingleReceptor* const me) {

if(me->itsMutex != NULL)

me->itsMutex = NULL;

}

void

TokenizerSyncSingleReceptor_Cleanup(TokenizerSyncSingleReceptor* const me) {

cleanUpRelations(me);

}

Code Listing 5-10: TSRSyncSingleReceptor.c

5.4 Multiple Event Receptor Pattern
Multiple event receptor finite state machines (MERSMs) are generally only used for synchro
nous state machines because the client is often aware of the set of events that it might want to
send to the server state machine. In this pattern, there is a single event receptor for each event
sent from the client.

5.4.1 Abstract

The MERSM approach for state machine implementation is probably the most common
implementation pattern for synchronous state machines. It is usually the simplest because each
event receptor concerns itself only with the handling of a single event and the execution of the
associated actions.

5.4.2 Problem

This pattern addresses the problem of providing a simple robust implementation for synchro
nous state machines.

288 Chapter 5

Figure 5-15: Multiple event receptor state machine context

5.4.3 Pattern Structure

The context for the state machine implementation is shown in Figure 5-15. You can see that
the TokenizerMultiReceptor has an event receptor for each event passed to the state machine
plus additional functions representing the entry and exit actions of each of the states. In addition,
the figure explicitly shows the enumerated types used for the state and substates (as mentioned, it
is also common to simply use integer values). The event type need not be explicitly represented
because the client implicitly indicates it by invoking the appropriate event receptor.

5.4.4 Collaboration Roles

This section describes the roles for this pattern.

5.4.4.1 Mutex
The mutex ensures the deterministic run-to-completion semantics of transitions by preventing
other clients from interrupting the state machine execution of an action sequence. This is

Design Patterns for State Machines 289

accomplished by locking the semaphore before the event is processed and releasing it once the
transition processing is complete.

5.4.4.2 TMRClient

This is the client of the state machine. It invokes the event receptors (in this case, those
functions with the “ev” prefix, such as evDigit and evDot.

5.4.4.3 TokenizeMultiReceptor
This element is the owner and implementer of the desired state machine (see Figure 5-12). It
has two kinds of attributes: those involved with the intent of the state machine (such as result)
and those involved with the management of the state machine (such as stateID). Of the
former type, we find:

•	 result, which holds the current value of the number being parsed
•	 tensPlace, which is used in computing fractional parts of numbers, as in 0.345 of the

number 10.345
•	 ch, which holds the current character being processed

Of the latter type, we see:

•	 stateID, which stores the current high level state (NULL_STATE, NONUMBER_STATE, or

GOTNUMBER_STATE)
•	 subStateID, which stores the current substate (NULL_SSTATE,

PROCESSINGWHOLEPART_SSTATE, or PROCESSINGFRACTIONALPART_SSTATE)

These values are defined in the enumerated types TSTATETYPE and TSUBSTATETYPE,
respectively.

Functions of this state machine are likewise of two types. The first type is the event receptors.
These are invoked by the client to “send” the event and pass data as needed. These include:

•	 evDigit(c: char) sends the evDigit event and passes the character of the digit as a
parameter

•	 evDot sends the dot event, indicating that the decimal point was the next character in the
string

•	 evEndOfString indicates that there are no more characters in the string
•	 evWhiteSpace indicates that whitespace, such as a blank or tab character, was found

The other operations are for the entry and exit actions of the states. Note that the transitions
actions are all embedded within the event receptors since they only occur once, but there are
often many paths into and out of a state so we explicitly create entry and exit functions for each
state. These are not called directly by the clients.

5.4.4.4 TSTATE
TSTATE is an enumerated type of the high level states.

290 Chapter 5

5.4.4.5 TSUBSTATE
TSUBSTATE is an enumerated type of the nested states. In this case, there are only two levels.

5.4.5 Consequences

This pattern simplifies the implementation by dividing up the state logic into a set of event
receptors. Each of which provides a switch-case statement to implement the appropriate
behavior dependent on states. The pattern is almost exclusively applied to synchronous state
machines because the event queues do not, generally, parse the internal content of the data they
manage, and so do not know which event receptor to call, if there is more than one.

5.4.6 Implementation Strategies

The primary variation points for the implementation of this pattern are to use If-then statements
instead of switch-case statements and to use raw integers for state variables rather than
enumerated types.

5.4.7 Related Patterns

This pattern uses the Guarded Call Pattern (see Chapter 4) to ensure deterministic run-to
completion of transitions. It is also possible to use the Critical Region Pattern to simply disable
task switching or even disable interrupts instead. The single event receptor provides a similar
approach that can be easily adapted for asynchronous event processing.

5.4.8 Example

The implementation of the sample state machine with this pattern is shown the following code lists.
Code Listing 5-11 shows the enumerated types and the definition of the digit() function. The next
two code listings provide the header and implementation files for the TokenizeMultiReceptor

class. Note that this class defines functions for entry and exit of each state even if empty. You may
choose to omit the empty ones if desired. The init() function operates as a constructor and puts
the object into its starting state and invokes the relevant entry action.

typedef enum TSTATETYPE {

NULL_STATE,

NONUMBER_STATE,

GOTNUMBER_STATE

} TSTATETYPE;

typedef enum TSUBSTATETYPE {

NULL_SSTATE,

PROCESSINGWHOLEPART_SSTATE,

PROCESSINGFRACTIONALPART_SSTATE

} TSUBSTATETYPE;

Design Patterns for State Machines 291

int digit(char c) {

return c-'0';

}

Code Listing 5-11: Basic types used by TokenizeMultiReceptor

#include "TokenizeMultiReceptor.h"

#include <stdio.h>

struct Mutex;

typedef struct TokenizerMultiReceptor TokenizerMultiReceptor;
struct TokenizerMultiReceptor {

char ch;

double result;

TSTATETYPE stateID;

TSUBSTATETYPE subStateID;

double tensPlace;

struct Mutex* itsMutex;

};

/* Constructors and destructors:*/

void TokenizerMultiReceptor_Cleanup(TokenizerMultiReceptor* const me);

/* Operations */

void TokenizerMultiReceptor_evDigit(TokenizerMultiReceptor* const me, char c);

void TokenizerMultiReceptor_evDot(TokenizerMultiReceptor* const me);

void TokenizerMultiReceptor_evEndOfString(TokenizerMultiReceptor* const me);

void TokenizerMultiReceptor_evWhiteSpace(TokenizerMultiReceptor* const me);

void

TokenizerMultiReceptor_enter_GotNumber(TokenizerMultiReceptor* const me);

void

TokenizerMultiReceptor_enter_NoNumber(TokenizerMultiReceptor* const me);

void

TokenizerMultiReceptor_enter_ProcessingFractionalPart(TokenizerMultiReceptor* const

me);

void

TokenizerMultiReceptor_enter_ProcessingWholePart(TokenizerMultiReceptor* const me);

void

TokenizerMultiReceptor_exit_GotNumber(TokenizerMultiReceptor* const me);

void

TokenizerMultiReceptor_exit_NoNumber(TokenizerMultiReceptor* const me);

void

TokenizerMultiReceptor_exit_ProcessingFractionalPart(TokenizerMultiReceptor* const me);

void

TokenizerMultiReceptor_exit_ProcessingWholePart(TokenizerMultiReceptor* const me);

TokenizerMultiReceptor * TokenizerMultiReceptor_Create(void);

292 Chapter 5

void TokenizerMultiReceptor_Destroy(TokenizerMultiReceptor* const me);

void TokenizerMultiReceptor_Init(TokenizerMultiReceptor* const me);

struct Mutex* TokenizerMultiReceptor_getItsMutex(const TokenizerMultiReceptor* const
me);

void TokenizerMultiReceptor_setItsMutex(TokenizerMultiReceptor* const me, struct
Mutex* p_Mutex);

#endif

Code Listing 5-12: TokenizeMultiReceptor.h

#include "TokenizerMultiReceptor.h"

#include "Mutex.h"

static void cleanUpRelations(TokenizerMultiReceptor* const me);

void TokenizerMultiReceptor_Cleanup(TokenizerMultiReceptor* const me) {

cleanUpRelations(me);

}

/*

process the evDigit event, passing the character

c as a parameter

*/
void TokenizerMultiReceptor_evDigit(TokenizerMultiReceptor* const me, char c) {

Mutex_lock(me->itsMutex);

switch (me->stateID) {

case NONUMBER_STATE:

/* transition to GotNumber state, default substate */

TokenizerMultiReceptor_exit_NoNumber(me);

me->ch = c;

TokenizerMultiReceptor_enter_GotNumber(me);

me->stateID = GOTNUMBER_STATE;

TokenizerMultiReceptor_enter_ProcessingWholePart(me);

me->subStateID = PROCESSINGWHOLEPART_SSTATE;

printf("Current value of result: %g\n", me->result);

break;

case GOTNUMBER_STATE:

switch (me->subStateID) {

case PROCESSINGWHOLEPART_SSTATE:

TokenizerMultiReceptor_exit_ProcessingWholePart(me);

me->ch = c;

TokenizerMultiReceptor_enter_ProcessingWholePart(me);
printf("Current value of result: %g\n", me->result);
break;

case PROCESSINGFRACTIONALPART_SSTATE:

TokenizerMultiReceptor_exit_ProcessingFractionalPart(me);
me->ch = c;
me->result += digit(me->ch) / me->tensPlace;
me->tensPlace *= 10.0;

Design Patterns for State Machines 293

TokenizerMultiReceptor_enter_ProcessingFractionalPart(me);
printf("Current value of result: %g\n", me->result);
break;

};
};

Mutex_release(me->itsMutex);
}

/*
process the evDot

*/
void TokenizerMultiReceptor_evDot(TokenizerMultiReceptor* const me) {
Mutex_lock(me->itsMutex);

me->ch = '.';

switch (me->stateID) {

case NONUMBER_STATE:

/* transition to GotNumber state, default substate */

TokenizerMultiReceptor_exit_NoNumber(me);

TokenizerMultiReceptor_enter_GotNumber(me);

me->stateID = GOTNUMBER_STATE;

TokenizerMultiReceptor_enter_ProcessingFractionalPart(me);

me->subStateID = PROCESSINGFRACTIONALPART_SSTATE;

break;

case GOTNUMBER_STATE:

switch (me->subStateID) {

case PROCESSINGWHOLEPART_SSTATE:

TokenizerMultiReceptor_exit_ProcessingWholePart(me);

TokenizerMultiReceptor_enter_ProcessingFractionalPart(me);
me->subStateID = PROCESSINGFRACTIONALPART_SSTATE;
break;

};
};

Mutex_release(me->itsMutex);
}

/*
process the evEndOfString event

*/
void TokenizerMultiReceptor_evEndOfString(TokenizerMultiReceptor* const me) {
Mutex_lock(me->itsMutex);

switch (me->stateID) {

case GOTNUMBER_STATE:

switch (me->subStateID) {

case PROCESSINGWHOLEPART_SSTATE:

TokenizerMultiReceptor_exit_ProcessingWholePart(me);

break;

case PROCESSINGFRACTIONALPART_SSTATE:

TokenizerMultiReceptor_exit_ProcessingFractionalPart(me);

break;

};

294 Chapter 5

TokenizerMultiReceptor_exit_GotNumber(me);

printf("Number: %g\n", me->result);

TokenizerMultiReceptor_enter_NoNumber(me);

me->stateID = NONUMBER_STATE;

break;

};
Mutex_release(me->itsMutex);

}

/*
process the evWhiteSpace event

*/
void TokenizerMultiReceptor_evWhiteSpace(TokenizerMultiReceptor* const me) {
Mutex_lock(me->itsMutex);

switch (me->stateID) {

case GOTNUMBER_STATE:

switch (me->subStateID) {

case PROCESSINGWHOLEPART_SSTATE:

TokenizerMultiReceptor_exit_ProcessingWholePart(me);

break;

case PROCESSINGFRACTIONALPART_SSTATE:

TokenizerMultiReceptor_exit_ProcessingFractionalPart(me);
break;

};

TokenizerMultiReceptor_exit_GotNumber(me);

printf("Number: %g\n", me->result);

TokenizerMultiReceptor_enter_NoNumber(me);

me->stateID = NONUMBER_STATE;

break;

};
Mutex_release(me->itsMutex);

}

/*
entry and exit actions for each state

*/
void
TokenizerMultiReceptor_enter_GotNumber(TokenizerMultiReceptor* const me) {
me->tensPlace = 10.0;

}

void
TokenizerMultiReceptor_enter_NoNumber(TokenizerMultiReceptor* const me) {
me->result = 0.0;

}

void
TokenizerMultiReceptor_enter_ProcessingFractionalPart(TokenizerMultiReceptor* const
me) {
}

Design Patterns for State Machines 295

void
TokenizerMultiReceptor_enter_ProcessingWholePart(TokenizerMultiReceptor* const me) {
me->result = me->result*10 + digit(me->ch);

}

void
TokenizerMultiReceptor_exit_GotNumber(TokenizerMultiReceptor* const me) {
me->subStateID = NULL_SSTATE;

}

void TokenizerMultiReceptor_exit_NoNumber(TokenizerMultiReceptor* const me) {
}

void
TokenizerMultiReceptor_exit_ProcessingFractionalPart(TokenizerMultiReceptor* const
me) {
}

void
TokenizerMultiReceptor_exit_ProcessingWholePart(TokenizerMultiReceptor* const me) {
}

/* helper functions */
TokenizerMultiReceptor * TokenizerMultiReceptor_Create(void) {
TokenizerMultiReceptor* me = (TokenizerMultiReceptor *) malloc(sizeof
(TokenizerMultiReceptor));
if(me!=NULL)

TokenizerMultiReceptor_Init(me);
return me;

}

void TokenizerMultiReceptor_Destroy(TokenizerMultiReceptor* const me) {
if(me!=NULL)
TokenizerMultiReceptor_Cleanup(me);
free(me);

}

void TokenizerMultiReceptor_Init(TokenizerMultiReceptor* const me) {
me->ch = ’x’;
me->result = 0.0;
me->tensPlace = 10.0;
me->itsMutex = NULL;

/* initialize state variables */

me->stateID = NONUMBER_STATE;

me->subStateID = NULL_SSTATE;

}

struct Mutex* TokenizerMultiReceptor_getItsMutex(const TokenizerMultiReceptor* const me) {
return (struct Mutex*)me->itsMutex;

}

void TokenizerMultiReceptor_setItsMutex(TokenizerMultiReceptor* const me, struct
Mutex* p_Mutex) {
me->itsMutex = p_Mutex;

}

296 Chapter 5

static void cleanUpRelations(TokenizerMultiReceptor* const me) {
if(me->itsMutex != NULL)
me->itsMutex = NULL;

}

Code Listing 5-13:TokenizeMultiReceptor.c

5.5 State Table Pattern
The State Table Pattern is a create pattern for large, flat (i.e., without nesting or AND-states)
state machines. It gives good performance (O(constant)) in use although it requires more
initialization time before it becomes available. They are relatively easy to extend to more states
but don’t handle nesting very easily.

5.5.1 Abstract

The State Table Pattern uses a two-dimensional array to hold the state transition information. This
table is usually constructed as a state x event table; the state variable is the first index and the
received event ID is the second index. The contents of the table is a structure containing links to
the appropriate actions and guards and the new state, should the transition be taken. This requires
a somewhat more elaborate data structuring than the other state implementation patterns.

5.5.2 Problem

The problem addressed by the State Table Pattern is to implement a state machine for
potentially large state spaces that are flat or can easily be made so. Also, this pattern is
applicable when you want the performance of the state machine, in terms of the response time
to a given event, independent of the size of the state space but you are unconcerned about the
time necessary to initialize the state machine.

5.5.3 Pattern Structure

Figure 5-16 shows the structure for the State Table Pattern. It shows two important aspects of the
data typing. First, the table itself is set up as a two-dimensional array of which the first index is
the state (held within the state variable stateID) and the second index is the event ID received.
The event ID, as before, is a field within the struct Event. To add levels of nesting requires the
nesting of such tables and most developers feel that it is easier to flatten the state space (that is
always possible – proof is left to the interested reader) than to nest the tables.

The other notable complexity of the data structuring is in the TableEntry type. This is a
struct containing a set of ActionTypes, a GuardType, and the state to enter when the
transition is complete. The GuardType is a parameterless function (except for the ubiquitous

Design Patterns for State Machines 297

Figure 5-16: State Table Pattern

object me pointer) that returns an int indication TRUE (non-zero) or FALSE (zero). The
ActionType, however, is a union with either a parameterless function pointer (Action0) or
a pointer to a function that has a char parameter (Action1). The TableEntry struct has
separate entries for entry, exit, and transition actions. If an action field doesn’t apply, the
pointer should be set to NULL. This means that if there are multiple actions to perform within
one of those fields, they need to be composed into a single action that calls them in sequence.
The initialization of all the table entries is done in the init() function of the
TokenizerStateTable class.

The eventDispatch() function now has a straightforward task. Given an incoming event,
invoke the guard (if any) in the cell table[stateID][eType] and if TRUE (or missing) then
invoke the exit actions, transition actions, and entry actions and set the stateID equal to the
value of the newState field found within the cell.

5.5.4 Collaboration Roles

This section describes the roles for this pattern.

298 Chapter 5

5.5.4.1 ActionPtr0
This type is a pointer to a function that has 0 parameters, other than the obligatory me object
pointer.

5.5.4.2 ActionPtr1
This type is a pointer to a function that takes 1 parameter of type char in addition to the
obligatory me object pointer.

5.5.4.3 ActionType
This type is a union of the two ActionPtr types; as a union it only has a single pointer, but it is
either of type ActionPtr0 or ActionPtr1. The ActionType defines the TableEntryType

fields for entry, transition, and exit actions.

5.5.4.4 Event
This type is a struct that holds the event type and the associated data passed within some of the
events – in this case, a char. This is normally implemented as a union in C.

5.5.4.5 EventType
The EventType is an enumerated type for the events. Alternatively, ints can be used but I
recommend enums as being more informative.

5.5.4.6 GuardType
This type implements a function pointer that takes no arguments but returns an int that will be
treated as a Boolean and used to determine whether a triggered transition will be taken or not.
Note that in this example, no guards are used so all these elements for this example will be NULL.

5.5.4.7 Mutex
As with the other implementation patterns, the Mutex is used to ensure the run-to-completion
semantics required for deterministic state behavior.

5.5.4.8 TableEntryType
This composite type specifies the elements within the cells of the state table. It consists of a set
of function pointers for exit, transition, entry, and guard actions plus the new state of the state
machine should the transition be taken.

5.5.4.9 TokenizerStateTable
This class implements the state machine. Internally it contains the state table per se as one of its
data members (along with the stateID and other attributes used for the computation required
of the state machine). It also includes the functions necessary to implement the actions called.

5.5.4.10 TSTATETYPE
TSTATE is an enumerated type of the high level states. Note that the nested state machine is
flattened to remove nesting. This greatly simplifies the state table. The enumerated values for
this type are:

Design Patterns for State Machines 299

• NULL_STATE

• NONUMBER_STATE

• GN_PROCESSINGWHOLEPART_STATE

• GN_PROCESSINGFRACTIONALPART_STATE

Where the GN_ prefix is a reminder that the last two states were nested states of the
GotNumber state.

5.5.5 Consequences

This pattern has excellent execution performance that is independent of the size of the state space
(i.e., the number of cells in the state table). This is because it is directly indexed with a combination
of the current stateID and the incoming eType. On the other hand, the initialization of the table,
while not particularly complex, is involved, since the fields for every StateTableEntry must be
initialized separately in the init() function. This means that the initialization of this pattern is
much slower than for the other patterns, with the possible exception of the State Pattern, discussed
in the next section. Thus, this implementation pattern is a good choice for circumstances in which
the start-up time of the system is relatively unimportant but the state space is potentially large.

The State Table Pattern is also easier to extend than the other patterns since extension is mostly
a matter of adding new elements to the state table and defining the StateTableEntries for
the relevant transitions.

It should be noted that this pattern will waste memory if the state space is sparse, that is, when
many of the cells are vacant, because the table allocates StateTableEntries for all cells.
This can be addressed by storing pointers to StateTableEntries rather than the elements
themselves if memory is tight.

This pattern, as presented, supports only synchronous state machines. However, it can be mixed
with the elements of the asynchronous version of the State Single Receptor Pattern (with
suitable enhancement of the TokenizerStateTable class with a task processing loop to pull
events from the event queue), it can likewise handle asynchronous events.

5.5.6 Implementation Strategies

Normally, the table is implemented as a two-dimensional array of StateTableEntries. This
can waste memory if the table is sparsely populated – memory can be saved by implementing
the table as a two-dimensional array of pointers to StateTableEntries instead (at the cost
of an additional pointer dereference during execution).

5.5.7 Related Patterns

This pattern employs the Mutex of the Guarded Call Pattern (see Chapter 4). It can also use a
critical region within the eventDispatch() function but that would not permit higher

300 Chapter 5

priority tasks to run during the state processing even when they could not possibly interfere
with the execution of the state machine. As noted above, the Queuing Pattern could be mixed in
as well, to support asynchronous event handling.

5.5.8 Example

This pattern has some interesting programming aspects with respect to the data typing, event
dispatching, and initialization. Code Listing 5-14 shows the definitions of the types used by the
TokenizerStateTable class. Code Listing 5-15 and Code Listing 5-16 show the header and
implementation files for the TokenizerStateTable class respectively.

#ifndef StateTablePattern_H

#define StateTablePattern_H

typedef enum TSTATETYPE {

NULL_STATE,

NONUMBER_STATE,

GN_PROCESSINGWHOLEPART_STATE,

GN_PROCESSINGFRACTIONALPART_STATE

} TSTATETYPE;

/* This action pointer accepts the me object pointer and no other parameters. */

typedef void (*ActionPtr0)(void*);

/* This action pointer accepts the me object pointer and the passed character. This means

that the client must always send the character data with the event. */

typedef void (*ActionPtr1)(void*, char);

typedef enum EventType {

EVDIGIT,

EVDOT,

EVWHITESPACE,

EVENDOFSTRING

} EventType;
typedef struct {

EventType eType;

union eventData {

char c;

} ed;

} Event;

typedef struct ap {

int nParams; /* 0 or 1 in this case */

union {

ActionPtr0 a0;

ActionPtr1 a1;

} aPtr;

} ActionType;

typedef ActionType* ActionPtr;

Design Patterns for State Machines 301

/* This function returns an int that is treated as a Boolean (0 == FALSE) and, if present, is

used to determine whether or not the transition is taken. Note that this function takes no

parameters (other than the object me pointer). */

typedef int (*GuardType)(void *);

typedef struct TableEntryType {

ActionPtr entryActionPtr;

ActionPtr exitActionPtr;

GuardType guardPtr;

TSTATETYPE newState;

ActionPtr transActionPtr;

} TableEntryType;

/* digit returns an int value of the char

That is: return c-'0' */

int digit(char c); */

#endif

Code Listing 5-14: StateTablePattern.h

#ifndef TokenizerStateTable_H

#define TokenizerStateTable_H

#include "StateTablePattern.h"

struct Mutex;

typedef struct TokenizerStateTable TokenizerStateTable;
struct TokenizerStateTable {

char ch;

double result;

TSTATETYPE stateID;

TableEntryType

table[GN_PROCESSINGFRACTIONALPART_STATE+1][EVENDOFSTRING+1];

double tensPlace;

struct Mutex* itsMutex;

};

/* Constructors and destructors:*/

void TokenizerStateTable_Init(TokenizerStateTable* const me);

void TokenizerStateTable_Cleanup(TokenizerStateTable* const me);

/* Operations */

void TokenizerStateTable_eventDispatch(TokenizerStateTable* const me, Event e);

void TokenizerStateTable_enter_GotNumber(TokenizerStateTable* const me);

void TokenizerStateTable_enter_NoNumber(TokenizerStateTable* const me);

void

TokenizerStateTable_enter_ProcessingFractionalPart(TokenizerStateTable* const me);

void

TokenizerStateTable_enter_ProcessingWholePart(TokenizerStateTable* const me);

void TokenizerStateTable_exit_GotNumber(TokenizerStateTable* const me);

302 Chapter 5

void TokenizerStateTable_exit_NoNumber(TokenizerStateTable* const me);

void

TokenizerStateTable_exit_ProcessingFractionalPart(TokenizerStateTable* const me);

void

TokenizerStateTable_exit_ProcessingWholePart(TokenizerStateTable* const me);

struct Mutex* TokenizerStateTable_getItsMutex(const TokenizerStateTable* const me);

void TokenizerStateTable_setItsMutex(TokenizerStateTable* const me, struct Mutex*
p_Mutex);

TokenizerStateTable * TokenizerStateTable_Create(void);

void TokenizerStateTable_Destroy(TokenizerStateTable* const me);

void TokenizerStateTable_assignCh(TokenizerStateTable* const me, char c);

void TokenizerStateTable_NoNum2GN(TokenizerStateTable* const me, char c);

void TokenizerStateTable_Frac2Frac(TokenizerStateTable* const me, char c);

void TokenizerStateTable_printResult(TokenizerStateTable* const me);

#endif

Code Listing 5-15: TokenizerStateTable.h

#include "TokenizerStateTable.h"

#include "Mutex.h"

static void cleanUpRelations(TokenizerStateTable* const me);

void TokenizerStateTable_Init(TokenizerStateTable* const me) {

me->ch = 'x';

me->result = 0.0;

me->tensPlace = 10.0;

me->itsMutex = NULL;

TSTATETYPE st;

EventType ev;

TableEntryType te;

/* initialize each cell of the table to null condition */

for (st=NULL_STATE; st<=GN_PROCESSINGFRACTIONALPART_STATE; st++) {

for (ev=EVDIGIT; ev<=EVENDOFSTRING; ev++) {

me->table[st][ev].newState = NULL_STATE;

me->table[st][ev].guardPtr = (GuardType)NULL;

me->table[st][ev].exitActionPtr = NULL;

me->table[st][ev].transActionPtr = NULL;

me->table[st][ev].entryActionPtr = NULL;

}

}

/* */

/* now add the specific transitions */

/* */

/* evDigit from NoNumber to ProcessingWholePart */

Design Patterns for State Machines 303

te.guardPtr = (GuardType)NULL;

te.exitActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.exitActionPtr->nParams = 0;

te.exitActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_exit_NoNumber;

te.transActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.transActionPtr->nParams = 1;

te.transActionPtr->aPtr.a1 = (ActionPtr1)TokenizerStateTable_NoNum2GN;

te.entryActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.entryActionPtr->nParams = 0;

te.entryActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_enter_ProcessingWholePart;
te.newState = GN_PROCESSINGWHOLEPART_STATE;
me->table[NONUMBER_STATE][EVDIGIT] = te;

/* evDigit from Proessing Whole Part to itself */

te.guardPtr = (GuardType)NULL;

te.exitActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.exitActionPtr->nParams = 0;

te.exitActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_exit_NoNumber;

te.transActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.transActionPtr->nParams = 1;

te.transActionPtr->aPtr.a1 = (ActionPtr1)TokenizerStateTable_assignCh;

te.entryActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.entryActionPtr->nParams = 0;

te.entryActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_enter_ProcessingWholePart;
te.newState = GN_PROCESSINGWHOLEPART_STATE;
me->table[GN_PROCESSINGWHOLEPART_STATE][EVDIGIT] = te;

/* evDot from NoNumber to ProcessingFractionalPart */

te.guardPtr = (GuardType)NULL;

te.exitActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.exitActionPtr->nParams = 0;

te.exitActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_exit_NoNumber;

te.transActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.transActionPtr->nParams = 1;

te.transActionPtr->aPtr.a1 = (ActionPtr1)TokenizerStateTable_NoNum2GN;

te.entryActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.entryActionPtr->nParams = 0;

te.entryActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_enter_ProcessingFractionalPart;
te.newState = GN_PROCESSINGFRACTIONALPART_STATE;
me->table[NONUMBER_STATE][EVDOT] = te;

/* evDot from ProcessingWholePart to ProcessingFractionalPart */

te.guardPtr = (GuardType)NULL;

te.exitActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.exitActionPtr->nParams = 0;

te.exitActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_exit_ProcessingWholePart;
te.transActionPtr = (ActionPtr)NULL;

304 Chapter 5

te.entryActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.entryActionPtr->nParams = 0;

te.entryActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_enter_ProcessingFractionalPart;
te.newState = GN_PROCESSINGFRACTIONALPART_STATE;
me->table[GN_PROCESSINGWHOLEPART_STATE][EVDOT] = te;

/* evDigit from ProcessingFractionalPart to ProcessingFractionalPart */

te.guardPtr = (GuardType)NULL;

te.exitActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.exitActionPtr->nParams = 0;

te.exitActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_exit_ProcessingFractionalPart;
te.transActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));
te.transActionPtr->nParams = 1;
te.transActionPtr->aPtr.a1 = (ActionPtr1)TokenizerStateTable_Frac2Frac;
te.entryActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));
te.entryActionPtr->nParams = 0;
te.entryActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_enter_ProcessingFractionalPart;
te.newState = GN_PROCESSINGFRACTIONALPART_STATE;
me->table[GN_PROCESSINGFRACTIONALPART_STATE][EVDIGIT] = te;

/* evWhiteSpace from ProcessingWholePart to NoNumber */

te.guardPtr = (GuardType)NULL;

te.exitActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.exitActionPtr->nParams = 0;

te.exitActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_exit_ProcessingWholePart;
te.transActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));
te.transActionPtr->nParams = 0;
te.transActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_printResult;
te.entryActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));
te.entryActionPtr->nParams = 0;
te.entryActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_enter_NoNumber;
te.newState = NONUMBER_STATE;
me->table[GN_PROCESSINGWHOLEPART_STATE][EVWHITESPACE] = te;

/* evWhiteSpace from ProcessingFractionalPart to NoNumber */

te.guardPtr = (GuardType)NULL;

te.exitActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.exitActionPtr->nParams = 0;

te.exitActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_exit_ProcessingFractionalPart;
te.transActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));
te.transActionPtr->nParams = 0;
te.transActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_printResult;
te.entryActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));
te.entryActionPtr->nParams = 0;
te.entryActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_enter_NoNumber;

Design Patterns for State Machines 305

te.newState = NONUMBER_STATE;

me->table[GN_PROCESSINGFRACTIONALPART_STATE][EVWHITESPACE] = te;

/* evEndOfString from ProcessingWholePart to NoNumber */

te.guardPtr = (GuardType)NULL;

te.exitActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.exitActionPtr->nParams = 0;

te.exitActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_exit_ProcessingWholePart;
te.transActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));
te.transActionPtr->nParams = 0;
te.transActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_printResult;
te.entryActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));
te.entryActionPtr->nParams = 0;
te.entryActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_enter_NoNumber;
te.newState = NONUMBER_STATE;
me->table[GN_PROCESSINGWHOLEPART_STATE][EVENDOFSTRING] = te;

/* evEndOfString from ProcessingFractionalPart to NoNumber */

te.guardPtr = (GuardType)NULL;

te.exitActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));

te.exitActionPtr->nParams = 0;

te.exitActionPtr->aPtr.a0 = (ActionPtr0)

TokenizerStateTable_exit_ProcessingFractionalPart;
te.transActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));
te.transActionPtr->nParams = 0;
te.transActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_printResult;
te.entryActionPtr = (ActionPtr)malloc(sizeof(ActionPtr));
te.entryActionPtr->nParams = 0;
te.entryActionPtr->aPtr.a0 = (ActionPtr0)TokenizerStateTable_enter_NoNumber;
te.newState = NONUMBER_STATE;
me->table[GN_PROCESSINGFRACTIONALPART_STATE][EVENDOFSTRING] = te;

/* Last initialization activity - enter the initial state */

me->stateID = NONUMBER_STATE;

TokenizerStateTable_enter_NoNumber(me);

}

void TokenizerStateTable_Cleanup(TokenizerStateTable* const me) {
cleanUpRelations(me);

}

void TokenizerStateTable_eventDispatch(TokenizerStateTable* const me, Event e) {
int takeTransition = 0;
Mutex_lock(me->itsMutex);
/* first ensure the entry is within the table boundaries */
if (me->stateID >= NULL_STATE && me->stateID <= GN_PROCESSINGFRACTIONALPART_STATE) {

if (e.eType >= EVDIGIT && e.eType <= EVENDOFSTRING) {

/* is there a valid transition for the current state and event? */

if (me->table[me->stateID][e.eType].newState != NULL_STATE) {

/* is there a guard? */

306 Chapter 5

if (me->table[me->stateID][e.eType].guardPtr == NULL)
/* is the guard TRUE? */
takeTransition = TRUE; /* if no guard, then it "evaluates" to TRUE */

else
takeTransition =(me->table[me->stateID][e.eType].guardPtr(me));

if (takeTransition) {
if (me->table[me->stateID][e.eType].exitActionPtr != NULL)

if (me->table[me->stateID][e.eType].exitActionPtr->nParams == 0)
me->table[me->stateID][e.eType].exitActionPtr->aPtr.a0(me);

else
me->table[me->stateID][e.eType].exitActionPtr->aPtr.a1(me, e.ed.c);

if (me->table[me->stateID][e.eType].transActionPtr != NULL)
if (me->table[me->stateID][e.eType].transActionPtr->nParams == 0)

me->table[me->stateID][e.eType].transActionPtr->aPtr.a0(me);
else
me->table[me->stateID][e.eType].transActionPtr->aPtr.a1(me, e.ed.c);

if (me->table[me->stateID][e.eType].entryActionPtr != NULL)
if (me->table[me->stateID][e.eType].entryActionPtr->nParams == 0)

me->table[me->stateID][e.eType].entryActionPtr->aPtr.a0(me);
else
me->table[me->stateID][e.eType].entryActionPtr->aPtr.a1(me, e.ed.c);

me->stateID = me->table[me->stateID][e.eType].newState;
}

}
}

}

Mutex_release(me->itsMutex);

}

void TokenizerStateTable_enter_GotNumber(TokenizerStateTable* const me) {
me->tensPlace = 10.0;

}

void TokenizerStateTable_enter_NoNumber(TokenizerStateTable* const me) {
me->result = 0.0;

}

void

TokenizerStateTable_enter_ProcessingFractionalPart(TokenizerStateTable*

const me) {

}

void
TokenizerStateTable_enter_ProcessingWholePart(TokenizerStateTable* const me) {
me->result = me->result*10 + digit(me->ch);

}

void TokenizerStateTable_exit_GotNumber(TokenizerStateTable* const me) {
}

void TokenizerStateTable_exit_NoNumber(TokenizerStateTable* const me) {
}

Design Patterns for State Machines 307

void

TokenizerStateTable_exit_ProcessingFractionalPart(TokenizerStateTable*

const me) {

}

void

TokenizerStateTable_exit_ProcessingWholePart(TokenizerStateTable* const me) {

}

struct Mutex* TokenizerStateTable_getItsMutex(const TokenizerStateTable* const me) {
return (struct Mutex*)me->itsMutex;

}

void TokenizerStateTable_setItsMutex(TokenizerStateTable* const me, struct Mutex*
p_Mutex) {
me->itsMutex = p_Mutex;

}

TokenizerStateTable * TokenizerStateTable_Create(void) {

TokenizerStateTable* me = (TokenizerStateTable *) malloc(sizeof

(TokenizerStateTable));

if(me!=NULL)

TokenizerStateTable_Init(me);

return me;

}

void TokenizerStateTable_Destroy(TokenizerStateTable* const me) {

if(me!=NULL)

TokenizerStateTable_Cleanup(me);

free(me);

}

static void cleanUpRelations(TokenizerStateTable* const me) {

if(me->itsMutex != NULL)

me->itsMutex = NULL;

}

void TokenizerStateTable_assignCh(TokenizerStateTable* const me, char c) {

me->ch = c;

}

void TokenizerStateTable_NoNum2GN(TokenizerStateTable* const me, char c) {

TokenizerStateTable_assignCh(me, c);

me->tensPlace = 10.0;

}

void TokenizerStateTable_Frac2Frac(TokenizerStateTable* const me, char c) {

me->ch = c;

me->result += digit(me->ch)/me->tensPlace;

me->tensPlace *= 10;

}

void TokenizerStateTable_printResult(TokenizerStateTable* const me) {

printf("Number: %g\n", me->result);

}

Code Listing 5-16: TokenizerStateTable.c

308 Chapter 5

Figure 5-17 shows an example execution of the system in which a client sends the characters of
the string “1.3” to the TokenizerStateTable.

5.6 State Pattern
This, perhaps poorly named, pattern comes from Design Patterns: Elements of Reusable Object
Oriented Software by Gamma, et. al.4 It provides an implementation strategy that can be
optimized either for data memory at the expense of run-time performance or vice versa. It is
applicable for sparse and dense state spaces alike and has relatively low initial set-up costs.
However, it makes rather heavy use of dynamic memory. It is simple to implement in C++
because of its use of polymorphism and therefore somewhat more complex in C.

5.6.1 Abstract

The State Pattern implements a state machine through the creation of state objects, one per
state. The class owning the state machine, known as the Context, maintains a list of these
objects with an internal variable that identifies which of these is the current state. All event
receptors are passed to the currently active state object.

5.6.2 Problem

This pattern provides a means for implementing state machines that simplifies the stateful class
by creating a set of objects, each of which implements the behavior of a single state. It makes
the states explicit, rather easy to modify, and enables the extension of the state space by adding
new state objects as needed.

5.6.3 Pattern Structure

Figure 5-18 shows the structure for the pattern for the parsing example. Note that the states are
all implemented as different classes, and each of these classes provides a function for each of
the events (even if the implementation is empty). The Context passes the control off to the
current state (implemented as the currentState index into the stateList array). Because
the actions are almost always implemented in terms of manipulating variables and invoking
functions of the Context, each state class requires a pointer back to the Context. In a fashion
similar to the State Table Pattern, the pattern is made much easier if you flatten the state
machine (i.e., eliminate nesting).

4 Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

Design Patterns for State Machines 309

Figure 5-17: State Table Pattern sequence for execution of “1.3” string

310 Chapter 5

Figure 5-18: State Pattern

5.6.4 Collaboration Roles

5.6.4.1 ActionPtr0
This type is a pointer to a function that has 0 parameters, other than the obligatory me object
pointer, and returns an int. The value of the return is either 0 (event discarded) or 1 (event
handled).

Design Patterns for State Machines 311

5.6.4.2 ActionPtr1
This type is a pointer to a function that takes 1 parameter of type char in addition to the
obligatory me object pointer and returns an int. The value of the return is either 0 (event
discarded) or 1 (event handled).

5.6.4.3 Context
The Context is the class that owns the state machine and has the data manipulated by the
actions. It implements a stateList as an array of pointers to the state classes and a
currentState variable that indicates which of the current states is active. Since the structure
of the state classes is all the same (in terms of the struct), the elements of the stateList array can
be typed as pointers to one of them.

The Context provides a set of event handlers similar to the Multiple Event Receptor Pattern.
The implementation of each event handler delegates the event handling to the current state object,
which is free to act on, or discard the event as appropriate. If it handles the event, the state object
will update the Context’s currentState variable; once the event handler returns (and if it
handled the event), the Context will execute the entry actions of the new state.

During initialization, the Context creates each of the state objects, puts it in the stateList,
and then enters the initial state.

5.6.4.4 Mutex
The Mutex ensures the deterministic run-to-completion semantics of transitions by preventing
other clients from interrupting the state machine execution of an action sequence. This is
accomplished by locking the semaphore before the event is processed and releasing it once the
transition processing is complete.

5.6.4.5 State Classes
The state classes each implement one of the states of the Context and implements all of the
event handlers. The event handlers return 1 if they handled the event and 0 if they discarded the
event. If it handles the event, the event handler is expected to execute the exit actions of the
current state, then the transition actions, and finally set the Context’s currentState to the
new state. The entry actions of the new state will be executed by the Context after the return
of the state object’s event handler. The state classes are:

• NoNumberState

• GN_ProcessingFractionState

• GN_ProcessingWholeState

Each event handler may have additional helper functions invoked by its event handlers,
particularly for the transition actions, in addition to the entry and exit actions.

Each state object has an instance of the StateActionSet class that implements function pointers
to each of the event handlers. During the state object’s initialization, these function pointers are set

312 Chapter 5

to point to the appropriate event handler functions of the state class. In this way, polymorphism
is addressed to support general event handling regardless of which is the current state.

The actions of each state class is normally a manipulation of the values owned by the Context.
For this reason, each state class has an association (pointer) back to the Context to access
those values. An alternative implementation, discussed later, is to pass the Context’s me

pointer to each action to make the state classes truly context-free.

5.6.4.6 StateActionSet
This class is the key to implementing the required polymorphism. Each state class owns its own
instance of this class in a variable called aSet. Each event handler (and the entry and exit
actions) have a function pointer that will be dereferenced to invoke the event handler for the
current state. In this case, the handlers are either of type ActionPtr0 (no parameters other
than the me pointer) and ActionPtr1 (one char parameter plus the me pointer). To implement
events with other parameter lists, new action pointer types must be created.

This class has no behavior other than an initializer that sets all the pointers to NULL initially. It
is expected that the owner of each instance of the StateActionSet will set the function
pointers to access the correct functions.

5.6.4.7 TSTATETYPE
TSTATE is an enumerated type of the high level states. Note that the nested state machine is
flattened to remove nesting. This greatly simplifies the state pattern implementation. The
enumerated values for this type are:

• NULL_STATE

• NONUMBER_STATE

• GN_PROCESSINGWHOLEPART_STATE

• GN_PROCESSINGFRACTIONALPART_STATE

Where the GN_ prefix is a reminder that the last two states were nested states of the
GotNumber state.

5.6.5 Consequences

This pattern localizes the behavior specific to a state to a single object, simplifying and
encapsulating state-specific behavior. This means new states can be added by adding a new
state class. New events are more work to add, since they must be at least added to the
StateActionSet and usually to each state class as well. The State Pattern makes the event
transitions explicit by providing an event handler for each incoming event in each state class.

This pattern uses more memory than a state table but simplifies the implementation by
distributing the complexity among the various state objects.

Design Patterns for State Machines 313

Another advantage of this pattern is that with a small change in implementation, it is possible to
share state objects among multiple instances of the Context class – for example, if the system
has multiple sensors all typed by the same class. This makes it very lightweight in terms of
memory usage in those cases.

5.6.6 Implementation Strategies

This pattern is straightforward in C++ but rather more complex in C because it uses inheritance and
polymorphism. In the implementation shown here, polymorphism is implemented with a combina
tion of two techniques. First, all the state classes implement the same event handling interface; that is
each state implements an event handler for all events even if the event is discarded. The event
handlers return a 1 if the event was handled and 0 if the event was discarded. This is necessary
because the Context needs to know if it should execute the entry actions of the new state.

The StateActionSet class then provided the polymorphic dispatch of the functions by
providing a set of pointers for the event handlers and the entry and exit handlers. Each state
class implemented the event handlers appropriately and then put a function pointer in its
StateActionSet instance. The Context class uses the currentState variable as the
index to dereference the pointer to the state that is “current,” and further dereferences the state’s
StateActionSet to invoke the appropriate event handler.

Two primary implementation variants occur around whether to create all the state objects at
once and simply switch among them based on the currentState variable of the Context, or
to dynamically create and destroy the instances of the different state. In general, if the system
changes state only infrequently, then memory can be saved by only creating the state as it is
needed and destroying it when the Context is no longer in that state. If the state changes are
frequent, then this approach will likely impose a significant performance penalty, so at the cost
of some additional memory, it is best to keep all the state instances in memory.

An interesting property of the pattern is that the state objects themselves have no state context other
than the itsContext pointer. This means that the state objects can be shared by multiple instances
of the Context class. This might occur if, for example, the system has many sensor instances all
typed by the same Context class. In this case the State Pattern can implement shared state objects,
resulting in significant memory savings. To decontextualize the state classes, remove the class’s
itsContext pointer and add a Context pointer (that’s the Context’s me pointer) to each event
handler parameter list (and also to the entry and exit actions). When this is done, each state class is
completely independent of its Context.

5.6.7 Related Patterns

The State Pattern implements a separate event receptor for each event, similar to the Single
Event Receptor Pattern. The State Pattern is useful for more complex state machines because

314 Chapter 5

the event handling is decomposed across different state objects. On the other hand,
implementation of nested states is somewhat simpler in the case of the Single Event Receptor
Pattern.

The State Table Pattern is similar in usage to the State Pattern, in that both are greatly simplified
by flattening the state hierarchy. However, the former cannot easily share implementation so
when the system has multiple instances of the Context, the latter may be more memory
efficient. Both patterns have good performance.

5.6.8 Example

This section shows the implementation of the various elements of this pattern for the tokenizer
example in Figure 5-12. Code Listing 5-17 shows the common types used by the other
elements.

#ifndef StatePattern_H

#define StatePattern_H

struct Context;

struct GN_ProcessingFractionState;

struct GN_ProcessingWholeState;

struct Mutex;

struct NoNumberState;

struct SPClient;

struct StateActionSet;

struct StatePatternBulder;

typedef enum TSTATETYPE {

NULL_STATE,

NONUMBER_STATE,

GN_PROCESSINGWHOLEPART_STATE,

GN_PROCESSINGFRACTIONALPART_STATE

} TSTATETYPE;

typedef int (*ActionPtr0)(void*);

typedef int (*ActionPtr1)(void*, char);

int digit(char c); /* returns c-‘0’ */

#endif

Code Listing 5-17: StatePattern.h

Next we have the Context code in Code Listing 5-18 and Code Listing 5-19.

#ifndef Context_H

#define Context_H

#include "StatePattern.h"

#include "GN_ProcessingFractionState.h"

Design Patterns for State Machines 315

#include "GN_ProcessingWholeState.h"

#include "NoNumberState.h"

struct Mutex;

typedef struct Context Context;
struct Context {

char ch;

TSTATETYPE currentState;

double result;

struct NoNumberState*

stateList[GN_PROCESSINGFRACTIONALPART_STATE+1];

double tensPlace;

struct Mutex* itsMutex;

};

/* Constructors and destructors:*/

void Context_Init(Context* const me);

void Context_Cleanup(Context* const me);

/* Operations */

void Context_evDigit(Context* const me, char c);

void Context_evDot(Context* const me);

void Context_evEndOfString(Context* const me);

void Context_evWhiteSpace(Context* const me);

struct Mutex* Context_getItsMutex(const Context* const me);

void Context_setItsMutex(Context* const me, struct Mutex* p_Mutex);

Context * Context_Create(void);

void Context_Destroy(Context* const me);

#endif

Code Listing 5-18: Context.h

#include "Context.h"

#include "Mutex.h"

static void cleanUpRelations(Context* const me);

void Context_Init(Context* const me) {

me->ch = 'x';

me->currentState = NULL_STATE;

me->result = 0.0;

me->tensPlace = 10.0;

me->itsMutex = NULL;

me->stateList[NULL_STATE] = NULL;

/* set up state list */

me->stateList[NONUMBER_STATE] = NoNumberState_Create();

me->stateList[NONUMBER_STATE]->itsContext = me;

me->stateList[GN_PROCESSINGWHOLEPART_STATE] = (NoNumberState*) GN_ProcessingWhole

State_Create();

316 Chapter 5

me->stateList[GN_PROCESSINGWHOLEPART_STATE]->itsContext = me;
me->stateList[GN_PROCESSINGFRACTIONALPART_STATE] = (NoNumberState*) GN_Processing

FractionState_Create();
me->stateList[GN_PROCESSINGFRACTIONALPART_STATE]->itsContext = me;

/* enter starting state */
me->stateList[NONUMBER_STATE]->aSet.entryAction(me->stateList[NONUMBER_STATE]);

}

void Context_Cleanup(Context* const me) {
NoNumberState_Destroy(me->stateList[NONUMBER_STATE]);
GN_ProcessingWholeState_Destroy((GN_ProcessingWholeState *)me->stateList

[GN_PROCESSINGWHOLEPART_STATE]);

GN_ProcessingFractionState_Destroy((GN_ProcessingFractionState *)me->stateList
[GN_PROCESSINGFRACTIONALPART_STATE]);
cleanUpRelations(me);

}

void Context_evDigit(Context* const me, char c) {
Mutex_lock(me->itsMutex);
/* this call does the entry and transition actions */
/* and updates the currentState variable */
if (me->stateList[me->currentState]->aSet.evDigitHandler(me->stateList[me->curren

tState], c))

me->stateList[me->currentState]->aSet.entryAction(me->stateList
[me->currentState]);
Mutex_release(me->itsMutex);

}

void Context_evDot(Context* const me) {
Mutex_lock(me->itsMutex);
/* this call does the entry and transition actions */
/* and updates the currentState variable */
if (me->stateList[me->currentState]->aSet.evDotHandler(me->stateList

[me->currentState]))
me->stateList[me->currentState]->aSet.entryAction(me->stateList

[me->currentState]);
Mutex_release(me->itsMutex);

}

void Context_evEndOfString(Context* const me) {
Mutex_lock(me->itsMutex);
/* this call does the entry and transition actions */
/* and updates the currentState variable */
if (me->stateList[me->currentState]->aSet.evEOSHandler(me->stateList

[me->currentState]))
me->stateList[me->currentState]->aSet.entryAction(me->stateList

[me->currentState]);
Mutex_release(me->itsMutex);

}

void Context_evWhiteSpace(Context* const me) {
Mutex_lock(me->itsMutex);

Design Patterns for State Machines 317

/* this call does the entry and transition actions */

/* and updates the currentState variable */

if (me->stateList[me->currentState]->aSet.evWSHandler(me->stateList

[me->currentState]))

me->stateList[me->currentState]->aSet.entryAction(me->stateList

[me->currentState]);

Mutex_release(me->itsMutex);

}

struct Mutex* Context_getItsMutex(const Context* const me) {

return (struct Mutex*)me->itsMutex;

}

void Context_setItsMutex(Context* const me, struct Mutex* p_Mutex) {

me->itsMutex = p_Mutex;

}

Context * Context_Create(void) {

Context* me = (Context *) malloc(sizeof(Context));

if(me!=NULL)

Context_Init(me);

return me;

}

void Context_Destroy(Context* const me) {

if(me!=NULL)

Context_Cleanup(me);

free(me);

}

static void cleanUpRelations(Context* const me) {

if(me->itsMutex != NULL)

me->itsMutex = NULL;

}

Code Listing 5-19: Context.c

The code for the StateActionSet is straightforward as we see in Code Listing 5-20 and
Code Listing 5-21.

#ifndef StateActionSet_H

#define StateActionSet_H

#include "StatePattern.h"

typedef struct StateActionSet StateActionSet;
struct StateActionSet {

ActionPtr0 entryAction;

ActionPtr1 evDigitHandler;

ActionPtr0 evDotHandler;

ActionPtr0 evEOSHandler;

318 Chapter 5

ActionPtr0 evWSHandler;

ActionPtr0 exitAction;

};

/* Constructors and destructors:*/

void StateActionSet_Init(StateActionSet* const me);

void StateActionSet_Cleanup(StateActionSet* const me);

StateActionSet * StateActionSet_Create(void);

void StateActionSet_Destroy(StateActionSet* const me);

#endif

Code Listing 5-20: StateActionSet.h

#include "StateActionSet.h"
void StateActionSet_Init(StateActionSet* const me) {

me->entryAction = NULL;

me->evDigitHandler = NULL;

me->evDotHandler = NULL;

me->evEOSHandler = NULL;

me->evWSHandler = NULL;

me->exitAction = NULL;

}

void StateActionSet_Cleanup(StateActionSet* const me) {

}

StateActionSet * StateActionSet_Create(void) {

StateActionSet* me = (StateActionSet *)

malloc(sizeof(StateActionSet));

if(me!=NULL)

StateActionSet_Init(me);

return me;

}

void StateActionSet_Destroy(StateActionSet* const me) {

if(me!=NULL)

StateActionSet_Cleanup(me);

free(me);

}

Code Listing 5-21: StateActionSet.c

The NoNumberState is the first state class. Its implementation is in Code Listing 5-22 and
Code Listing 5-23.

#ifndef NoNumberState_H

#define NoNumberState_H

#include "StatePattern.h"

#include "StateActionSet.h"

Design Patterns for State Machines 319

struct Context;

typedef struct NoNumberState NoNumberState;
struct NoNumberState {

struct StateActionSet aSet;

struct Context* itsContext;

};

/* Constructors and destructors:*/

void NoNumberState_Init(NoNumberState* const me);

void NoNumberState_Cleanup(NoNumberState* const me);

/* Operations */

void NoNumberState_NoNum2GN(NoNumberState* const me, char c);

void NoNumberState_entryAction(NoNumberState* const me);

int NoNumberState_evDigit(NoNumberState* const me, char c);

int NoNumberState_evDot(NoNumberState* const me);

int NoNumberState_evEndOfString(NoNumberState* const me);

int NoNumberState_evWhiteSpace(NoNumberState* const me);

void NoNumberState_exitAction(NoNumberState* const me);

struct Context* NoNumberState_getItsContext(const NoNumberState* const me);
void NoNumberState_setItsContext(NoNumberState* const me, struct Context* p_Context);
NoNumberState * NoNumberState_Create(void);
void NoNumberState_Destroy(NoNumberState* const me);

#endif

Code Listing 5-22: NoNumberState.h

#include "NoNumberState.h"

#include "Context.h"

#include <stdio.h>

static void cleanUpRelations(NoNumberState* const me);

void NoNumberState_Init(NoNumberState* const me) {

{

StateActionSet_Init(&(me->aSet));

}

me->itsContext = NULL;

/* set up the aSet function pointers */

/* remember that the initializer for the StateActionSet */

/* sets all pointers to NULL as the default */

me->aSet.evDigitHandler = (ActionPtr1) NoNumberState_evDigit;

me->aSet.evDotHandler = (ActionPtr0) NoNumberState_evDot;

me->aSet.evWSHandler = (ActionPtr0) NoNumberState_evWhiteSpace;

me->aSet.evEOSHandler = (ActionPtr0) NoNumberState_evEndOfString;

me->aSet.entryAction = (ActionPtr0) NoNumberState_entryAction;

me->aSet.exitAction = (ActionPtr0) NoNumberState_exitAction;

}

320 Chapter 5

void NoNumberState_Cleanup(NoNumberState* const me) {
cleanUpRelations(me);

}

void NoNumberState_NoNum2GN(NoNumberState* const me, char c) {
me->itsContext->ch = c;
me->itsContext->tensPlace = 10.0;

}

void NoNumberState_entryAction(NoNumberState* const me) {
me->itsContext->result = 0.0;

}

int NoNumberState_evDigit(NoNumberState* const me, char c) {
NoNumberState_exitAction(me);
NoNumberState_NoNum2GN(me, c); /* transition action */
/* set new state */
me->itsContext->currentState = GN_PROCESSINGWHOLEPART_STATE;
return 1; /* processed event */

}

int NoNumberState_evDot(NoNumberState* const me) {
return 0; /* discarded event */

}

int NoNumberState_evEndOfString(NoNumberState* const me) {
return 0; /* discarded event */

}

int NoNumberState_evWhiteSpace(NoNumberState* const me) {
return 0; /* discarded event */

}

void NoNumberState_exitAction(NoNumberState* const me) {
}

struct Context* NoNumberState_getItsContext(const NoNumberState* const me) {
return (struct Context*)me->itsContext;

}

void NoNumberState_setItsContext(NoNumberState* const me, struct Context* p_Context) {
me->itsContext = p_Context;

}

NoNumberState * NoNumberState_Create(void) {
NoNumberState* me = (NoNumberState *)

malloc(sizeof(NoNumberState));
if(me!=NULL)

NoNumberState_Init(me);
return me;

}

void NoNumberState_Destroy(NoNumberState* const me) {
if(me!=NULL)

NoNumberState_Cleanup(me);
free(me);

}

Design Patterns for State Machines 321

static void cleanUpRelations(NoNumberState* const me) {

if(me->itsContext != NULL)

me->itsContext = NULL;

}

Code Listing 5-23: NoNumberState.c

The next state class is GN_ProcessingWholeState. Its implementation is in Code Listing 5-24
and Code Listing 5-25.

#ifndef GN_ProcessingWholeState_H

#define GN_ProcessingWholeState_H

#include "StatePattern.h"

#include "StateActionSet.h"

struct Context;

typedef struct GN_ProcessingWholeState GN_ProcessingWholeState;
struct GN_ProcessingWholeState {

struct StateActionSet aSet;

struct Context* itsContext;

};

/* Constructors and destructors:*/

void GN_ProcessingWholeState_Init(GN_ProcessingWholeState* const me);

void GN_ProcessingWholeState_Cleanup(GN_ProcessingWholeState* const me);

/* Operations */

void GN_ProcessingWholeState_entryAction(GN_ProcessingWholeState* const me);

int GN_ProcessingWholeState_evDigit(GN_ProcessingWholeState* const me, char c);

int GN_ProcessingWholeState_evDot(GN_ProcessingWholeState* const me);

int

GN_ProcessingWholeState_evEndOfString(GN_ProcessingWholeState* const me);

int

GN_ProcessingWholeState_evWhiteSpace(GN_ProcessingWholeState* const me);

void GN_ProcessingWholeState_exitAction(GN_ProcessingWholeState* const me);

void GN_ProcessingWholeState_printResult(GN_ProcessingWholeState* const me);

struct Context* GN_ProcessingWholeState_getItsContext(const GN_ProcessingWholeState*
const me);

void
GN_ProcessingWholeState_setItsContext(GN_ProcessingWholeState* const me, struct Con
text* p_Context);

GN_ProcessingWholeState * GN_ProcessingWholeState_Create(void);

void GN_ProcessingWholeState_Destroy(GN_ProcessingWholeState* const me);

#endif

Code Listing 5-24: GN_ProcessingWholeState.h

322 Chapter 5

#include "GN_ProcessingWholeState.h"
#include "Context.h"

static void cleanUpRelations(GN_ProcessingWholeState* const me);

void GN_ProcessingWholeState_Init(GN_ProcessingWholeState* const me) {
StateActionSet_Init(&(me->aSet));
me->itsContext = NULL;

/* set up the aSet function pointers */

/* remember that the initializer for the StateActionSet */

/* sets all pointers to NULL as the default */

me->aSet.evDigitHandler = (ActionPtr1) GN_ProcessingWholeState_evDigit;

me->aSet.evDotHandler = (ActionPtr0) GN_ProcessingWholeState_evDot;

me->aSet.evWSHandler = (ActionPtr0) GN_ProcessingWholeState_evWhiteSpace;

me->aSet.evEOSHandler = (ActionPtr0) GN_ProcessingWholeState_evEndOfString;

me->aSet.entryAction = (ActionPtr0) GN_ProcessingWholeState_entryAction;

me->aSet.exitAction = (ActionPtr0) GN_ProcessingWholeState_exitAction;

}

void GN_ProcessingWholeState_Cleanup(GN_ProcessingWholeState* const me) {
cleanUpRelations(me);

}

void GN_ProcessingWholeState_entryAction(GN_ProcessingWholeState* const me) {
me->itsContext->result = me->itsContext->result*10 + digit(me->itsContext->ch);

}

int GN_ProcessingWholeState_evDigit(GN_ProcessingWholeState* const me, char c) {
GN_ProcessingWholeState_exitAction(me);
me->itsContext->ch = c; /* transitiona action */
/* note: same state is reentered in this case */
/* so no change to itsContext->currentState */
return 1; /* event handled */

}

int GN_ProcessingWholeState_evDot(GN_ProcessingWholeState* const me) {
GN_ProcessingWholeState_exitAction(me);
/* no transition action */
me->itsContext->currentState = GN_PROCESSINGFRACTIONALPART_STATE;
return 1; /* event handled */

}

int
GN_ProcessingWholeState_evEndOfString(GN_ProcessingWholeState* const me) {
GN_ProcessingWholeState_exitAction(me);
GN_ProcessingWholeState_printResult(me); /* transition action */
me->itsContext->currentState = NONUMBER_STATE;
return 1; /* event handled */

}

int GN_ProcessingWholeState_evWhiteSpace(GN_ProcessingWholeState* const me) {
GN_ProcessingWholeState_exitAction(me);
GN_ProcessingWholeState_printResult(me); /* transition action */
me->itsContext->currentState = NONUMBER_STATE;

Design Patterns for State Machines 323

return 1; /* event handled */

}

/*## operation exitAction() */

void GN_ProcessingWholeState_exitAction(GN_ProcessingWholeState* const me) {

}

void GN_ProcessingWholeState_printResult(GN_ProcessingWholeState* const me) {

printf("Number: %g\n", me->itsContext->result);

}

struct Context* GN_ProcessingWholeState_getItsContext(const GN_ProcessingWholeState*
const me) {
return (struct Context*)me->itsContext;

}

void
GN_ProcessingWholeState_setItsContext(GN_ProcessingWholeState* const me, struct Con
text* p_Context) {
me->itsContext = p_Context;

}

GN_ProcessingWholeState * GN_ProcessingWholeState_Create(void) {

GN_ProcessingWholeState* me = (GN_ProcessingWholeState *) malloc(sizeof

(GN_ProcessingWholeState));

if(me!=NULL)

GN_ProcessingWholeState_Init(me);

return me;

}

void GN_ProcessingWholeState_Destroy(GN_ProcessingWholeState* const me) {

if(me!=NULL)

GN_ProcessingWholeState_Cleanup(me);

free(me);

}

static void cleanUpRelations(GN_ProcessingWholeState* const me) {

if(me->itsContext != NULL)

me->itsContext = NULL;

}

Code Listing 5-25: GN_ProcessingWholeState.c

And finally, the code for the GN_ProcessingFractionState is given in Code Listing 5-26
and Code Listing 5-27.

#ifndef GN_ProcessingFractionState_H

#define GN_ProcessingFractionState_H

#include "StatePattern.h"

#include "StateActionSet.h"

struct Context;

typedef struct GN_ProcessingFractionState GN_ProcessingFractionState;

struct GN_ProcessingFractionState {

324 Chapter 5

struct StateActionSet aSet;

struct Context* itsContext;

};

void GN_ProcessingFractionState_Init(GN_ProcessingFractionState* const me);

void

GN_ProcessingFractionState_Cleanup(GN_ProcessingFractionState* const me);

/* Operations */

void

GN_ProcessingFractionState_Frac2Frac(GN_ProcessingFractionState* const me, char c);

void

GN_ProcessingFractionState_entryAction(GN_ProcessingFractionState* const me);

int

GN_ProcessingFractionState_evDigit(GN_ProcessingFractionState* const me, char c);

int

GN_ProcessingFractionState_evDot(GN_ProcessingFractionState* const me);

int

GN_ProcessingFractionState_evEndOfString(GN_ProcessingFractionState* const me);

int

GN_ProcessingFractionState_evWhiteSpace(GN_ProcessingFractionState* const me);

void

GN_ProcessingFractionState_exitAction(GN_ProcessingFractionState* const me);

void

GN_ProcessingFractionState_printResult(GN_ProcessingFractionState* const me);

struct Context* GN_ProcessingFractionState_getItsContext(const GN_Processing

FractionState* const me);

void
GN_ProcessingFractionState_setItsContext(GN_ProcessingFractionState* const me, struct
Context* p_Context);

GN_ProcessingFractionState *

GN_ProcessingFractionState_Create(void);

void GN_ProcessingFractionState_Destroy(GN_ProcessingFractionState* const me);

#endif

Code Listing 5-26: GN_ProcessingFractionState.h

#include "GN_ProcessingFractionState.h"

#include "Context.h"

static void cleanUpRelations(GN_ProcessingFractionState* const me);

void GN_ProcessingFractionState_Init(GN_ProcessingFractionState* const me) {

StateActionSet_Init(&(me->aSet));

me->itsContext = NULL;

/* set up the aSet function pointers */

/* remember that the initializer for the StateActionSet */

Design Patterns for State Machines 325

/* sets all pointers to NULL as the default */

me->aSet.evDigitHandler = (ActionPtr1) GN_ProcessingFractionState_evDigit;

me->aSet.evDotHandler = (ActionPtr0) GN_ProcessingFractionState_evDot;

me->aSet.evWSHandler = (ActionPtr0) GN_ProcessingFractionState_evWhiteSpace;

me->aSet.evEOSHandler = (ActionPtr0) GN_ProcessingFractionState_evEndOfString;

me->aSet.entryAction = (ActionPtr0) GN_ProcessingFractionState_entryAction;

me->aSet.exitAction = (ActionPtr0) GN_ProcessingFractionState_exitAction;

}

void
GN_ProcessingFractionState_Cleanup(GN_ProcessingFractionState* const me) {
cleanUpRelations(me);

}

void
GN_ProcessingFractionState_Frac2Frac(GN_ProcessingFractionState* const me, char c) {
me->itsContext->ch = c;
me->itsContext->result += digit(me->itsContext->ch)/me->itsContext->tensPlace;
me->itsContext->tensPlace *= 10;

}

void
GN_ProcessingFractionState_entryAction(GN_ProcessingFractionState* const me) {
}

int
GN_ProcessingFractionState_evDigit(GN_ProcessingFractionState* const me, char c) {
GN_ProcessingFractionState_entryAction(me);
GN_ProcessingFractionState_Frac2Frac(me, c); /* transition action */
/* note: state doesn't change, so the same */
/* state is reentered */
return 1; /* event handled */

}

int
GN_ProcessingFractionState_evDot(GN_ProcessingFractionState* const me) {
return 0; /* event discarded */

}

int
GN_ProcessingFractionState_evEndOfString(GN_ProcessingFractionState* const me) {
GN_ProcessingFractionState_exitAction(me);
GN_ProcessingFractionState_printResult(me); /* transition action */
me->itsContext->currentState = NONUMBER_STATE;
return 1; /* event handled */

}

int
GN_ProcessingFractionState_evWhiteSpace(GN_ProcessingFractionState* const me) {
GN_ProcessingFractionState_exitAction(me);
GN_ProcessingFractionState_printResult(me); /* transition action */
me->itsContext->currentState = NONUMBER_STATE;
return 1; /* event handled */

}

326 Chapter 5

void

GN_ProcessingFractionState_exitAction(GN_ProcessingFractionState* const me) {

}

void

GN_ProcessingFractionState_printResult(GN_ProcessingFractionState* const me) {

printf("Number: %g\n", me->itsContext->result);

}

struct Context* GN_ProcessingFractionState_getItsContext(const GN_ProcessingFraction-
State* const me) {
return (struct Context*)me->itsContext;

}

void
GN_ProcessingFractionState_setItsContext(GN_ProcessingFractionState* const me, struct
Context* p_Context) {
me->itsContext = p_Context;

}

GN_ProcessingFractionState *

GN_ProcessingFractionState_Create(void) {

GN_ProcessingFractionState* me = (GN_ProcessingFractionState *) malloc(sizeof

(GN_ProcessingFractionState));

if(me!=NULL)

GN_ProcessingFractionState_Init(me);

return me;

}

void

GN_ProcessingFractionState_Destroy(GN_ProcessingFractionState* const me) {

if(me!=NULL)

GN_ProcessingFractionState_Cleanup(me);

free(me);

}

static void cleanUpRelations(GN_ProcessingFractionState* const me) {

if(me->itsContext != NULL)

me->itsContext = NULL;

}

Code Listing 5-27: GN_ProcessingFractionState.c

It is interesting to see how these elements interact in execution of a simple case. Figure 5-19
shows the interaction flow for processing the string “1.3” sent from a client of the state
machine. In this figure, you can see how the event handlers of the Context invoke the
event handlers of the then-current state to process the incoming events. You may find it
interesting to compare this figure with the corresponding figure for the State Table Pattern,
Figure 5-17.

Design Patterns for State Machines 327

Figure 5-19: State Pattern sequence for execution of “1.3” string

5.7 AND-States
The last two patterns in the chapter will deal with the implementation of AND-states. For these
patterns, we’ll use the state machine from Figure 5-7 as the example state machine with
AND-states and we’ll add a few actions to make it more “real.” Figure 5-20 shows the
example state machine we will demonstrate with the pattern.

328 Chapter 5

Figure 5-20: AND-state machine used for example case

The semantics of AND-states is that they are “logically concurrent.” This means that in some
sense they execute simultaneously, but what does that mean in a world of run-to-completion
semantics? If two AND-states process different events, then AND-states are more of a
(significant) notational convenience. Simultaneity only has importance when the same event is
processed within two AND-states. In that case, what is the meaning of concurrency? In this
context, it means that the semantics of the system are not dependent upon which AND-state
processes the event first. It also implies that when AND-states are active, each active AND-state
must receive, in some sense, its own copy of the event sent to the state machine, and is free to
act on it or discard it as appropriate. What we cannot rely upon is which AND-state will act
on the event first5. If we need to ensure that they execute in a particular order, then perhaps
AND-states were not the appropriate mechanism to employ.

A naïve but overly heavyweight approach would be to spawn threads for the different state
machines. While this can be made to work, in practice I have never seen AND-states
implemented in this fashion, and for good reason. The logical concurrency really only requires:

5 The UML has no notion of event or transition priority. Events are always handled in order of their arrival.

Design Patterns for State Machines 329

Figure 5-21: Race condition

•	 events are handled run-to-completion
•	 all AND-state event handlers must complete before the next event sent to the state machine

is processed

So which AND-state processes the event first? The upper one? The one you drew first? The one
that appears first in the code? It doesn’t matter. That’s the point.

Note that this does raise the specter of race conditions, as discussed in Chapter 4. For example,
consider the state machine in Figure 5-21. It contains a race condition. The e1 event is handled
in two AND-states; each of which has an action manipulating the variable x. If the upper AND-
state processes its event first6, the resulting value of x is 33. If the lower one processes it first,
the answer is 40.

Don’t do that!7

If you need to force a specific order of event execution, then you can use a simple pattern called
event propagation. If you want to force the upper AND-state to execute first, then create a
different event for the second transition and generate that event in an action of the first
transition. This pattern, applied to the previous figure, is shown in Figure 5-22, where the GEN

6	 Notice that x is set to the value 1 before entering the CompositeState.
7	 A Law of Douglass is that any language sufficiently powerful to be useful is also sufficiently powerful to say
nonsense. My rule is to try to say only smart things.

330 Chapter 5

Figure 5-22: Event propagation

macro generates the event using whatever synchronous or asynchronous approach you’ve
implemented for your state machine.

There are a number of ways commonly used to implement AND-states. The first, and least
desirable, is to flatten the state space. This is problematic, as was pointed out in Figure 5-6
because of state explosion – you must compute the cross product of the state spaces and that’s
often very ugly and difficult to read and understand because of the sheer number of resulting
states. It does work, however, and in simple cases it might be easiest.

A more common solution is to decompose the object owning the AND-states into a set of
different objects that communicate. This is the Decomposed AND-State Pattern discussed
below. It is also possible to elaborate one of the previous patterns we’ve presented into
managing multiple AND-states in the event receptors. There are other solutions as well, but
these are the most common.

5.8 Decomposed AND-State Pattern
This pattern extends the State Pattern to implement AND-states. It does so by creating a
collaboration of different objects, each of which is allocated one of the AND-states.

Design Patterns for State Machines 331

5.8.1 Abstract

The Decomposed And-State Pattern takes an object that owns a state machine and decomposes
it into a set of objects that interact. The main object owns the overarching state machine and
other objects own individual AND-states.

5.8.2 Problem

This pattern addresses the problem of implementing state machines that contain orthogonal
regions (AND-states) in a way that preserves the AND-state design.

5.8.3 Pattern Structure

Figure 5-23 shows the structure of the pattern. Instead of a singular class that implements the
state machine, the state problem is decomposed into a collaboration of objects that relate to the
Context.

5.8.4 Collaboration Roles

This section describes the pattern roles.

5.8.4.1 AbstractAndStateClass
This class is an abstraction of the various concrete AND-state classes. It provides an event handler
for each event received by the Context and a link back to the Context for execution of actions
and manipulation of variables within the Context. In the C implementation, this is a notional
class, not usually represented directly but it does show what is inherited by the subclasses.

5.8.4.2 ActionSet
This class contains a set of pointers, one per incoming event. It is owned by the Abstract-
AndStateClass and implemented by the ConcreteAndStateClass. In the initializer of
the latter class, the function pointers are set to point to the functions that implement the actions
within that concrete state.

5.8.4.3 AndStateList
This class maintains a list of orthogonal regions (containing all the nested states within an
AND-state) for a given composite. There is an entry for every state; if the list is empty, then that
state has no nested AND-states. If it is not empty, then the list entry contains a list of the
orthogonal regions of AND-states; each region is represented by a
ConcreteAndStateClass and it implements all the nested states within that region.

Consider the example state machine in Figure 5-20. STATE_N in this case is 1. The 0-th
state is the Off state; this state has no nested AND-states so this list entry is empty. The 1st
state is the On state; this state has two nested orthogonal regions, Color and Rate. Thus the

332 Chapter 5

Figure 5-23: Decomposed And-State Pattern structure

Context list entry for State 1 is not empty. In this case, the list entry for State 1 has two
lists, one for each orthogonal region. The ConcreteAndStateClass Color manages
three states – Red, Yellow, and Green. The ConcreteAndStateClass Rate also
manages three states – Steady, Flashing_Slowly, and Flashing_Quickly. So the
lists look like this:

• Context state list:
• State 0 (Off) – Empty
• State 1 (On) list:

○ Color (manages Red, Yellow, Green states)
○ Rate (manages Steady, Flashing_Slowly, Flashing_Quickly states)

Design Patterns for State Machines 333

You’ll notice that this gives us lists of lists of states. This is often implemented with arrays
because the sizes of these lists are known at design time. If you need to further nest AND-states,
you can add additional levels of lists, with appropriate behavior at each level.

5.8.4.4 ConcreteAndStateClass
This represents one of the AND-state classes. The design will contain one such class, with its own
implementation of its event receptors, for each AND-state. In the basic pattern, each and-state
class will itself use the Multiple Event Receptor Pattern, but other approaches are possible.

5.8.4.5 ConcreteAndStateType
Each AND-state has its unique set of nested states; this type is an enumerated list of them. One
such type will exist for each ConcreteAndStateClass. This class is not visible to the clients
of the Context.

5.8.4.6 Context
The Context is the ultimate owner of the state machine. It has the variables and functions that
are manipulated by the ConcreteAndStateClasses. This class presents a set of event
receptors to its clients (alternatively, the Single Event Receptor Pattern or other state pattern can
be mixed in here as well). The basic rules of state change are enforced here:

•	 If the new state being entered has no nested AND-states, it executes normally as in the
Multiple Event Receptor Pattern.

•	 If the new state being entered has nested AND-states, then its entry action is performed
prior to the entry actions of the entered nested AND-states.

•	 If the composite state having AND-states is unchanged (that is, the event transition is local
within the current composite state), then the event is delegated to its set of AND-state
classes for handling, including the execution of the actions.

•	 If the composite state is left, then the exit actions of the composite state execute after the
exit actions for each of its nested AND-states.

5.8.5 Consequences

This pattern provides extensible mechanisms for managing state machines that contain AND-
states. Each class is relatively simple because of the delegation of responsibilities for state
management – the Context manages the high level states, and the
ConcreteAndStateClasses manage the nested AND-states.

On the other hand, this pattern does require the management of lists, of lists which will
normally be managed as lists of pointers to lists of pointers. This level of indirection, while
powerful, can be the source of obscure mistakes if not carefully managed.

5.8.6 Implementation Strategies

As mentioned in the previous section, the common implementation of the lists is as arrays of
pointers to arrays of pointers.

334 Chapter 5

5.8.7 Related Patterns

This pattern can be used in conjunction with the state pattern – in this case, each state class will
be the Context for its AND-states.

5.8.8 Example

In the example shown in Figure 5-24, the LightController plays the part of the Context

pattern role and the ErrorStateClass and ModeStateClass play the part of the
ConcreteAndStateClass in the pattern. Supporting elements, such as enumerated types and
the StateActionSet are also shown.

Figure 5-24: Example problem with Decomposed And-State Pattern

Design Patterns for State Machines 335

The code for this example is shown in the next several code listings. The LightPkg.h file in
Code Listing 5-28 holds the basic types used in the other files.

#ifndef LightPkg_H

#define LightPkg_H

struct AndStateList;

struct DecompBuilder;

struct DecompClient;

struct ErrorStateClass;

struct Klaxon;

struct Light;

struct LightController;

struct ModeStateClass;

struct Mutex;

struct StateActionSet;

typedef enum HighLevelLightStates {

NULL_STATE,

OFF_STATE,

ON_STATE,

EMERGENCY_STATE

} HighLevelLightStates;

typedef enum ColorType {

RED,

YELLOW,

GREEN

} ColorType;

typedef enum FlashType {

STEADY,

SLOWLY,

QUICKLY

} FlashType;

typedef enum ErrorStatesType {

NULL_ERROR_STATE,

OK_STATE,

WARNING_STATE,

ERROR_STATE

} ErrorStatesType;

typedef enum ModeStatesType {

NULL_MODE_STATE,

OPERATIONAL_STATE,

STARTINGUP_STATE,

SHUTTINGDOWN_STATE

} ModeStatesType;

typedef enum On_State_Regions {

ERRORSTATUS_ANDSTATE,

MODE_ANDSTATE

} On_State_Regions;

336 Chapter 5

#define MAX_ANDSTATES 2

/* This action pointer accepts the me object pointer and no other parameters. */

typedef int (*ActionPtr0)(void*);

/* This action pointer accepts the me object pointer and no other parameters. */

typedef int (*ActionPtr1)(void*, int);

#endif

Code Listing 5-28: LightPkg.h

The LightController class provides the state machine context for the example. It is shown in
Code Listing 5-29 and Code Listing 5-30.

#ifndef LightController_H

#define LightController_H

#include "LightPkg.h"

#include "AndStateList.h"

#include "ErrorStateClass.h"

#include "ModeStateClass.h"

struct Klaxon;

struct Light;

struct Mutex;

typedef struct LightController LightController;
struct LightController {

struct AndStateList* asList[EMERGENCY_STATE+1];

HighLevelLightStates currentState;

struct Klaxon* itsKlaxon;

struct Light* itsLight;

struct Mutex* itsMutex;

};

void LightController_evEnable(LightController* const me);

void LightController_evDisable(LightController* const me);

void LightController_reset(LightController* const me);

void LightController_evOk(LightController* const me);

void LightController_evWarning(LightController* const me);

void LightController_evError(LightController* const me);

void LightController_evRun(LightController* const me);

void LightController_evShutDown(LightController* const me);

void LightController_evAbort(LightController* const me);

void LightController_Init(LightController* const me);

void LightController_Cleanup(LightController* const me);

void LightController_enter_OffState(LightController* const me, HighLevelLightStates
newState);

void LightController_enter_OnState(LightController* const me, HighLevelLightStates
newState);

Design Patterns for State Machines 337

void LightController_enter_EmergencyState(LightController* const me, HighLevelLight-
States newState);

void LightController_exit_OffState(LightController* const me);

void LightController_exit_OnState(LightController* const me);

void LightController_exit_EmergencyState(LightController* const me);

void LightController_enterNestedAndStates(LightController* const me, HighLevelLight-
States next);

void LightController_exitNestedAndStates(LightController* const me);

struct Klaxon* LightController_getItsKlaxon(const LightController* const me);

void LightController_setItsKlaxon(LightController* const me, struct Klaxon* p_Klaxon);

struct Light* LightController_getItsLight(const LightController* const me);

void LightController_setItsLight(LightController* const me, struct Light* p_Light);

struct Mutex* LightController_getItsMutex(const LightController* const me);

void LightController_setItsMutex(LightController* const me, struct Mutex* p_Mutex);
LightController * LightController_Create(void);

void LightController_Destroy(LightController* const me);

#endif

Code Listing 5-29: LightController.h

#include "LightController.h"

#include "Klaxon.h"

#include "Light.h"

#include "Mutex.h"

static void cleanUpRelations(LightController* const me);

void LightController_evEnable(LightController* const me) {

HighLevelLightStates newState;

Mutex_lock(me->itsMutex);
switch (me->currentState) {

case OFF_STATE:

newState = ON_STATE;

LightController_exit_OffState(me);

/* transition to On state */

Light_turnOn(me->itsLight);

Light_setColor(me->itsLight, RED);

Light_setMode(me->itsLight, QUICKLY);

/* enter new state */

LightController_enter_OnState(me, newState);

me->currentState = newState;

338 Chapter 5

break;

case ON_STATE:

case EMERGENCY_STATE:

break;
};

Mutex_release(me->itsMutex);
}

void LightController_evDisable(LightController* const me) {
HighLevelLightStates newState;

Mutex_lock(me->itsMutex);

switch (me->currentState) {

case ON_STATE:

newState = OFF_STATE;

/* exit nested states */

LightController_exit_OnState(me);

/* transition to OFF state */
Light_turnOff(me->itsLight);

/* enter new state */

LightController_enter_OffState(me, newState);

me->currentState = newState;

break;

case OFF_STATE:
case EMERGENCY_STATE:

break;

};

Mutex_release(me->itsMutex);
}

void LightController_reset(LightController* const me) {
HighLevelLightStates newState;

Mutex_lock(me->itsMutex);

switch (me->currentState) {

case ON_STATE:

/* exit and-states, then outer state */

newState = ON_STATE;

LightController_exit_OnState(me);

/* note no transition actions */

/* enter outer state, then and-states */

LightController_enter_OnState(me, newState);

me->currentState = newState;

break;

case OFF_STATE:

case EMERGENCY_STATE:

break;

Design Patterns for State Machines 339

};
Mutex_release(me->itsMutex);

}

void LightController_evOk(LightController* const me) {
ErrorStateClass* sPtr;
ActionPtr0 aPtr;
HighLevelLightStates newState;

Mutex_lock(me->itsMutex);

switch (me->currentState) {

case OFF_STATE:

break;

case ON_STATE:

/* note we're not exiting On state */

/* so just delegate to and-states */

newState = me->currentState;

if (me->asList[newState]) {

sPtr = me->asList[newState]->andStates[ERRORSTATUS_ANDSTATE];
if (sPtr) {

aPtr = sPtr->aSet.evOkHandler;

if (aPtr)

aPtr(sPtr);
};

sPtr = me->asList[newState]->andStates[MODE_ANDSTATE];
if (sPtr) {
aPtr = sPtr->aSet.evOkHandler;

if (aPtr)

aPtr(sPtr);

};

};

break;

case EMERGENCY_STATE:

break;

};

Mutex_release(me->itsMutex);

}

void LightController_evWarning(LightController* const me) {
ErrorStateClass* sPtr;
ActionPtr0 aPtr;
HighLevelLightStates newState;

Mutex_lock(me->itsMutex);

switch (me->currentState) {

case OFF_STATE:

break;

case ON_STATE:

/* note we're not exiting On state */

/* so just delegate to and-states */

newState = me->currentState;

340 Chapter 5

if (me->asList[newState]) {
sPtr = me->asList[newState]->andStates[ERRORSTATUS_ANDSTATE];
if (sPtr) {

aPtr = sPtr->aSet.evWarningHandler;

if (aPtr)

aPtr(sPtr);

};

sPtr = me->asList[newState]->andStates[MODE_ANDSTATE];
if (sPtr) {
aPtr = sPtr->aSet.evWarningHandler;

if (aPtr)

aPtr(sPtr);

};

};

break;

case EMERGENCY_STATE:

break;

};

Mutex_release(me->itsMutex);

/*#]*/

}

void LightController_evError(LightController* const me) {
ErrorStateClass* sPtr;
ActionPtr0 aPtr;
HighLevelLightStates newState;

Mutex_lock(me->itsMutex);

switch (me->currentState) {

case OFF_STATE:

break;

case ON_STATE:

/* note we're not exiting On state */

/* so just delegate to AND-states */

newState = me->currentState;

if (me->asList[newState]) {

sPtr = me->asList[newState]->andStates[ERRORSTATUS_ANDSTATE];
if (sPtr) {

aPtr = sPtr->aSet.evErrorHandler;

if (aPtr)

aPtr(sPtr);
};

sPtr = me->asList[newState]->andStates[MODE_ANDSTATE];
if (sPtr) {
aPtr = sPtr->aSet.evErrorHandler;

if (aPtr)

aPtr(sPtr);

};

};

break;

case EMERGENCY_STATE:

Design Patterns for State Machines 341

break;

};

Mutex_release(me->itsMutex);

}

void LightController_evRun(LightController* const me) {
ErrorStateClass* sPtr;
ActionPtr0 aPtr;
HighLevelLightStates newState;

Mutex_lock(me->itsMutex);

switch (me->currentState) {

case OFF_STATE:

break;

case ON_STATE:

/* note we're not exiting On state */

/* so just delegate to and-states */

newState = me->currentState;

if (me->asList[newState]) {

sPtr = me->asList[newState]->andStates[ERRORSTATUS_ANDSTATE];
if (sPtr) {

aPtr = sPtr->aSet.evRunHandler;

if (aPtr)

aPtr(sPtr);
};

sPtr = me->asList[newState]->andStates[MODE_ANDSTATE];
if (sPtr) {
aPtr = sPtr->aSet.evRunHandler;

if (aPtr)
aPtr(sPtr);

};
};

break;
case EMERGENCY_STATE:

break;
};

Mutex_release(me->itsMutex);
}

void LightController_evShutDown(LightController* const me) {
ErrorStateClass* sPtr;
ActionPtr0 aPtr;
HighLevelLightStates newState;

Mutex_lock(me->itsMutex);

switch (me->currentState) {

case OFF_STATE:

break;

case ON_STATE:

/* note we're not exiting On state */

/* so just delegate to and-states */

newState = me->currentState;

342 Chapter 5

if (me->asList[newState]) {
sPtr = me->asList[newState]->andStates[ERRORSTATUS_ANDSTATE];
if (sPtr) {

aPtr = sPtr->aSet.evShutDownHandler;

if (aPtr)

aPtr(sPtr);

};

sPtr = me->asList[newState]->andStates[MODE_ANDSTATE];
if (sPtr) {
aPtr = sPtr->aSet.evShutDownHandler;

if (aPtr)
aPtr(sPtr);

};
};

break;
case EMERGENCY_STATE:

break;
};

Mutex_release(me->itsMutex);
}

void LightController_evAbort(LightController* const me) {
ErrorStateClass* sPtr;
ActionPtr1 is_inPtr;
HighLevelLightStates newState;
int precond1=0, precond2=0;

Mutex_lock(me->itsMutex);

switch (me->currentState) {

case ON_STATE:

/* are the preconditions true: */

/* ie. Error and Operational states? */

if (me->asList[me->currentState]) {

sPtr = me->asList[me->currentState]->andStates[ERRORSTATUS_ANDSTATE];
if (sPtr) {

is_inPtr = sPtr->aSet.is_inHandler;

if (is_inPtr)

precond1 = is_inPtr(sPtr, ERROR_STATE);
};

sPtr = me->asList[me->currentState]->andStates[MODE_ANDSTATE];
if (sPtr) {

is_inPtr = sPtr->aSet.is_inHandler;
if (is_inPtr)

precond2 = is_inPtr(sPtr, OPERATIONAL_STATE);
};

};
if (precond1 && precond2) {

newState = EMERGENCY_STATE;

/* exit nested states */

LightController_exit_OnState(me);

Design Patterns for State Machines 343

/* transition to OFF state */

Light_setColor(me->itsLight, RED);

Light_setMode(me->itsLight, QUICKLY);

Klaxon_alarmOn(me->itsKlaxon);

/* enter new state */
LightController_enter_EmergencyState(me, newState);
me->currentState = newState;

};
break;

case OFF_STATE:

case EMERGENCY_STATE:

break;
};

Mutex_release(me->itsMutex);
}

void LightController_Init(LightController* const me) {
me->currentState = NULL_STATE;
me->itsKlaxon = NULL;
me->itsLight = NULL;
me->itsMutex = NULL;
int j;
HighLevelLightStates st;
ErrorStateClass* andStatePtr = NULL;

for (st=NULL_STATE;st<=EMERGENCY_STATE; st++)

me->asList[st] = NULL;

/* create all and-state lists and states */

/* In this case, there is only one, the ON_STATE */

/* which has two nested orthogonal regions */

me->asList[ON_STATE] = AndStateList_Create();

me->asList[ON_STATE]->nAndStates = 2;

andStatePtr = ErrorStateClass_Create();

if (andStatePtr) {

me->asList[ON_STATE]->andStates[ERRORSTATUS_ANDSTATE] = andStatePtr;

andStatePtr->itsLightController = me;

};

andStatePtr = (ErrorStateClass*)ModeStateClass_Create();
if (andStatePtr) {

me->asList[ON_STATE]->andStates[MODE_ANDSTATE] = andStatePtr;

andStatePtr->itsLightController = me;

};

/* enter initial state */

me->currentState = OFF_STATE;

LightController_enter_OffState(me, OFF_STATE);

/* any nested and-states? */

if (me->asList[me->currentState])

/* enter the default state in each and-state */

344 Chapter 5

for (j=0; j<me->asList[me->currentState]->nAndStates; j++)
me->asList[me->currentState]->andStates[j]->aSet.entryAction(me->asList[me

>currentState]->andStates[j]);
}

void LightController_Cleanup(LightController* const me) {
cleanUpRelations(me);

}

void LightController_enter_OffState(LightController* const me, HighLevelLightStates
newState) {
LightController_enterNestedAndStates(me, newState);

}

void LightController_enter_OnState(LightController* const me, HighLevelLightStates
newState) {
LightController_enterNestedAndStates(me, newState);

}

void LightController_enter_EmergencyState(LightController* const me, HighLevelLight-
States newState) {
LightController_enterNestedAndStates(me, newState);

}

void LightController_exit_OffState(LightController* const me) {
LightController_exitNestedAndStates(me);

}

void LightController_exit_OnState(LightController* const me) {
LightController_exitNestedAndStates(me);

}

void LightController_exit_EmergencyState(LightController* const me) {
LightController_exitNestedAndStates(me);

}

void LightController_enterNestedAndStates(LightController* const me, HighLevelLight-
States next) {
ErrorStateClass* sPtr;
ActionPtr0 aPtr;
int j;

if (me->asList[next]) {

/* and-states to enter? */

for (j=0; j<me->asList[next]->nAndStates; j++) {

sPtr = me->asList[next]->andStates[j];
if (sPtr) {

aPtr = sPtr->aSet.entryAction;

if (aPtr)

aPtr(sPtr);

sPtr->currentState = sPtr->defaultState;

};

};
};

}

Design Patterns for State Machines 345

void LightController_exitNestedAndStates(LightController* const me) {
ErrorStateClass* sPtr;
ActionPtr0 aPtr;
int j;

if (me->asList[me->currentState]) { /* any nested states to exit? */
for (j=0; j<me->asList[me->currentState]->nAndStates; j++) {

sPtr = me->asList[me->currentState]->andStates[j];

if (sPtr) {

aPtr = sPtr->aSet.exitAction;

if (aPtr)

aPtr(sPtr);

sPtr->currentState = NULL_ERROR_STATE;

}; // if sPtr

}; // for
}; // if asList

}

struct Klaxon* LightController_getItsKlaxon(const LightController* const me) {
return (struct Klaxon*)me->itsKlaxon;

}

void LightController_setItsKlaxon(LightController* const me, struct Klaxon* p_Klaxon) {
me->itsKlaxon = p_Klaxon;

}

struct Light* LightController_getItsLight(const LightController* const me) {
return (struct Light*)me->itsLight;

}

void LightController_setItsLight(LightController* const me, struct Light* p_Light) {
me->itsLight = p_Light;

}

struct Mutex* LightController_getItsMutex(const LightController* const me) {
return (struct Mutex*)me->itsMutex;

}

void LightController_setItsMutex(LightController* const me, struct Mutex* p_Mutex) {
me->itsMutex = p_Mutex;

}

LightController * LightController_Create(void) {
LightController* me = (LightController *)

malloc(sizeof(LightController));
if(me!=NULL)

LightController_Init(me);
return me;

}

void LightController_Destroy(LightController* const me) {
if(me!=NULL)

LightController_Cleanup(me);
free(me);

}

346 Chapter 5

static void cleanUpRelations(LightController* const me) {

if(me->itsKlaxon != NULL)

me->itsKlaxon = NULL;

if(me->itsLight != NULL)

me->itsLight = NULL;

if(me->itsMutex != NULL)

me->itsMutex = NULL;

}

Code Listing 5-30: LightController.c

The AndStateList class provides a level of indirection to a ConcreteAndState class that
implements the state machine for all its nested states. It primarily provides an array of pointers
to ConcreteAndState classes. Its code appears in Code Listing 5-31 and Code Listing 5-32.

#ifndef AndStateList_H

#define AndStateList_H

#include "LightPkg.h"

struct ErrorStateClass;

typedef struct AndStateList AndStateList;
struct AndStateList {

struct ErrorStateClass* andStates[MAX_ANDSTATES];

int nAndStates;

};

void AndStateList_Init(AndStateList* const me);

void AndStateList_Cleanup(AndStateList* const me);

AndStateList * AndStateList_Create(void);

void AndStateList_Destroy(AndStateList* const me);

#endif

Code Listing 5-31: AndStateList.h

#include "AndStateList.h"

#include "ErrorStateClass.h"

void AndStateList_Init(AndStateList* const me) {

me->nAndStates = 0;

int j;

for (j=0; j<MAX_ANDSTATES; j++)

me->andStates[j] = NULL;

}

void AndStateList_Cleanup(AndStateList* const me) {

}

AndStateList * AndStateList_Create(void) {

Design Patterns for State Machines 347

AndStateList* me = (AndStateList *)

malloc(sizeof(AndStateList));

if(me!=NULL)

AndStateList_Init(me);

return me;

}

void AndStateList_Destroy(AndStateList* const me) {

if(me!=NULL)

AndStateList_Cleanup(me);

free(me);

}

Code Listing 5-32: AndStateList.c

Similarly, the StateActionSet is a collection of function pointers, one per event handler plus
a couple of the entry and exit actions and the is_in() function (which identifies if the state
class is in the specified state). The reason I made it a class is to provide the initialization
behavior (setting all the pointers to NULL).

#ifndef StateActionSet_H

#define StateActionSet_H

#include "LightPkg.h"

typedef struct StateActionSet StateActionSet;
struct StateActionSet {

ActionPtr0 entryAction;

ActionPtr0 evAbortHandler;

ActionPtr0 evDisableHandler;

ActionPtr0 evEnableHandler;

ActionPtr0 evErrorHandler;

ActionPtr0 evOkHandler;

ActionPtr0 evRunHandler;

ActionPtr0 evShutDownHandler;

ActionPtr0 evWarningHandler;

ActionPtr0 exitAction;

ActionPtr1 is_inHandler;

};

void StateActionSet_Init(StateActionSet* const me);

void StateActionSet_Cleanup(StateActionSet* const me);

StateActionSet * StateActionSet_Create(void);

void StateActionSet_Destroy(StateActionSet* const me);

#endif

Code Listing 33: StateActionSet.h

348 Chapter 5

#include "StateActionSet.h"

void StateActionSet_Init(StateActionSet* const me) {
me->entryAction = NULL;
me->evAbortHandler = NULL;
me->evDisableHandler = NULL;
me->evEnableHandler = NULL;
me->evErrorHandler = NULL;
me->evOkHandler = NULL;
me->evRunHandler = NULL;
me->evShutDownHandler = NULL;
me->evWarningHandler = NULL;
me->exitAction = NULL;
me->is_inHandler = NULL;

}

void StateActionSet_Cleanup(StateActionSet* const me) {

}

StateActionSet * StateActionSet_Create(void) {

StateActionSet* me = (StateActionSet *)

malloc(sizeof(StateActionSet));

if(me!=NULL)

StateActionSet_Init(me);

return me;

}

void StateActionSet_Destroy(StateActionSet* const me) {

if(me!=NULL)

StateActionSet_Cleanup(me);

free(me);

}

Code Listing 34: StateActionSet.c

The last four code lists are for the header and implementation files of the ErrorStateClass

and ModeStateClass, which each implement one of the orthogonal regions of the composite
state On. Note that the aSet attribute variable is in the same position for both these classes,
meaning that we can invoke them using a cast pointer without getting into trouble – that is, if
we have a pointer to an ErrorStateClass struct, in reality it might be a pointer to a
ModeStateClass but it still works because the aSet that holds the function pointers to the
functions to invoke is in the same position offset in both classes.

#ifndef ErrorStateClass_H

#define ErrorStateClass_H

#include "LightPkg.h"

#include "StateActionSet.h"

struct LightController;

Design Patterns for State Machines 349

typedef struct ErrorStateClass ErrorStateClass;
struct ErrorStateClass {

struct StateActionSet aSet;

ErrorStatesType currentState;

ErrorStatesType defaultState;

struct LightController* itsLightController;

};

void ErrorStateClass_Init(ErrorStateClass* const me);

void ErrorStateClass_Cleanup(ErrorStateClass* const me);

/* Operations */

void ErrorStateClass_entryAction(ErrorStateClass* const me);

int ErrorStateClass_evAbort(ErrorStateClass* const me);

int ErrorStateClass_evError(ErrorStateClass* const me);

int ErrorStateClass_evOk(ErrorStateClass* const me);

int ErrorStateClass_evWarning(ErrorStateClass* const me);

void ErrorStateClass_exitAction(ErrorStateClass* const me);

int ErrorStateClass_is_in(ErrorStateClass* const me, ErrorStatesType s);

struct LightController* ErrorStateClass_getItsLightController(const ErrorStateClass*
const me);

void ErrorStateClass_setItsLightController(ErrorStateClass* const me, struct LightCon
troller* p_LightController);

ErrorStateClass * ErrorStateClass_Create(void);

void ErrorStateClass_Destroy(ErrorStateClass* const me);

#endif

Code Listing 5-35: ErrorStateClass.h

#include "ErrorStateClass.h"

#include "LightController.h"

static void cleanUpRelations(ErrorStateClass* const me);

void ErrorStateClass_Init(ErrorStateClass* const me) {

me->currentState = NULL_ERROR_STATE;

me->defaultState = ERROR_STATE;

StateActionSet_Init(&(me->aSet));

me->itsLightController = NULL;

/*

set up the aSet function pointers

remember that the initializer for the StateActionSet

sets all pointers to NULL as the default

Note: In this implementation, pointers are only set to non-NULL

for actual handlers (except for entry() and exit()). The caller

can tell if the event is handled by checking if the pointer is NULL.

The higher level On state handles events reset and evDisable.

*/

350 Chapter 5

me->aSet.evOkHandler = (ActionPtr0) ErrorStateClass_evOk;
me->aSet.evWarningHandler = (ActionPtr0) ErrorStateClass_evWarning;
me->aSet.evErrorHandler = (ActionPtr0) ErrorStateClass_evError;
me->aSet.evAbortHandler = (ActionPtr0) ErrorStateClass_evAbort;
me->aSet.entryAction = (ActionPtr0) ErrorStateClass_entryAction;
me->aSet.exitAction = (ActionPtr0) ErrorStateClass_exitAction;
me->aSet.is_inHandler = (ActionPtr1) ErrorStateClass_is_in

}

void ErrorStateClass_Cleanup(ErrorStateClass* const me) {
cleanUpRelations(me);

}

void ErrorStateClass_entryAction(ErrorStateClass* const me) {
}

int ErrorStateClass_evAbort(ErrorStateClass* const me) {
switch(me->currentState) {

case OK_STATE:

case WARNING_STATE:

case ERROR_STATE:

case NULL_ERROR_STATE:
break;

};
return 1;

}

int ErrorStateClass_evError(ErrorStateClass* const me) {
switch(me->currentState) {

case OK_STATE:
Light_setColor(me->itsLightController->itsLight, RED);
me->currentState = ERROR_STATE;
break;

case WARNING_STATE:
Light_setColor(me->itsLightController->itsLight, RED);
me->currentState = ERROR_STATE;
break;

case ERROR_STATE:

case NULL_ERROR_STATE:

break;

};
return 1;

}

int ErrorStateClass_evOk(ErrorStateClass* const me) {
switch(me->currentState) {

Light_setColor(me->itsLightController->itsLight, GREEN);

me->currentState = OK_STATE;

break;

case ERROR_STATE:
Light_setColor(me->itsLightController->itsLight, GREEN);
me->currentState = OK_STATE;
break;

Design Patterns for State Machines 351

case WARNING_STATE:

case OK_STATE:

case NULL_ERROR_STATE:

break;

};

return 1;

/*#]*/

}

/*## operation evWarning() */
int ErrorStateClass_evWarning(ErrorStateClass* const me) {
/*#[operation evWarning() */
switch(me->currentState) {

case OK_STATE:

Light_setColor(me->itsLightController->itsLight, YELLOW);

me->currentState = WARNING_STATE;

break;

case ERROR_STATE:

Light_setColor(me->itsLightController->itsLight, YELLOW);

me->currentState = WARNING_STATE;

break;

case WARNING_STATE:
case NULL_ERROR_STATE:

break;
};

return 1;
}

void ErrorStateClass_exitAction(ErrorStateClass* const me) {
}

int ErrorStateClass_is_in(ErrorStateClass* const me, ErrorStatesType s) {
return s == me->currentState;

}

struct LightController* ErrorStateClass_getItsLightController(const ErrorStateClass*
const me) {
return (struct LightController*)me->itsLightController;

}

void ErrorStateClass_setItsLightController(ErrorStateClass* const me, struct LightCon
troller* p_LightController) {
me->itsLightController = p_LightController;

}

ErrorStateClass * ErrorStateClass_Create(void) {
ErrorStateClass* me = (ErrorStateClass *)

malloc(sizeof(ErrorStateClass));
if(me!=NULL)

ErrorStateClass_Init(me);
return me;

}

void ErrorStateClass_Destroy(ErrorStateClass* const me) {
if(me!=NULL)

352 Chapter 5

ErrorStateClass_Cleanup(me);

free(me);

}

static void cleanUpRelations(ErrorStateClass* const me) {

if(me->itsLightController != NULL)

me->itsLightController = NULL;

}

Code Listing 5-36: ErrorState.c

#ifndef ModeStateClass_H

#define ModeStateClass_H

#include "LightPkg.h"

#include "StateActionSet.h"

struct LightController;

typedef struct ModeStateClass ModeStateClass;
struct ModeStateClass {

struct StateActionSet aSet;

ModeStatesType currentState;

ModeStatesType defaultState;

struct LightController* itsLightController;

};

void ModeStateClass_Init(ModeStateClass* const me);

void ModeStateClass_Cleanup(ModeStateClass* const me);

/* Operations */

void ModeStateClass_entryAction(ModeStateClass* const me);

int ModeStateClass_evAbort(ModeStateClass* const me);

int ModeStateClass_evRun(ModeStateClass* const me);

int ModeStateClass_evShutDown(ModeStateClass* const me);

void ModeStateClass_exitAction(ModeStateClass* const me);

int ModeStateClass_is_in(ModeStateClass* const me, ModeStatesType s);

struct LightController* ModeStateClass_getItsLightController(const ModeStateClass*
const me);

void ModeStateClass_setItsLightController(ModeStateClass* const me, struct LightCon
troller* p_LightController);

ModeStateClass * ModeStateClass_Create(void);

void ModeStateClass_Destroy(ModeStateClass* const me);

#endif

Code Listing 5-37: ModeStateClass.h

#include "ModeStateClass.h"

#include "LightController.h"

static void cleanUpRelations(ModeStateClass* const me);

void ModeStateClass_Init(ModeStateClass* const me) {

Design Patterns for State Machines 353

me->currentState = NULL_MODE_STATE;

me->defaultState = STARTINGUP_STATE;

{

StateActionSet_Init(&(me->aSet));

}

me->itsLightController = NULL;

/*

set up the aSet function pointers

remember that the initializer for the StateActionSet

sets all pointers to NULL as the default

Note: In this implementation, pointers are only set to non-NULL

for actual handlers (except for entry() and exit()). The caller

can tell if the event is handled by checking if the pointer is NULL.

The higher level On state handles events reset and evDisable.
*/
me->aSet.evRunHandler = (ActionPtr0) ModeStateClass_evRun;
me->aSet.evShutDownHandler = (ActionPtr0) ModeStateClass_evShutDown;
me->aSet.evAbortHandler = (ActionPtr0) ModeStateClass_evAbort;
me->aSet.entryAction = (ActionPtr0) ModeStateClass_entryAction;
me->aSet.exitAction = (ActionPtr0) ModeStateClass_exitAction;
me->aSet.is_inHandler = (ActionPtr1) ModeStateClass_is_in;

}

void ModeStateClass_Cleanup(ModeStateClass* const me) {
cleanUpRelations(me);

}

void ModeStateClass_entryAction(ModeStateClass* const me) {
}

int ModeStateClass_evAbort(ModeStateClass* const me) {
return 1;

}

int ModeStateClass_evRun(ModeStateClass* const me) {
switch (me->currentState) {

case STARTINGUP_STATE:
Light_setMode(me->itsLightController->itsLight, STEADY);
me->currentState = OPERATIONAL_STATE;
break;

case SHUTTINGDOWN_STATE:
Light_setMode(me->itsLightController->itsLight, QUICKLY);
me->currentState = STARTINGUP_STATE;
break;

case OPERATIONAL_STATE:
case NULL_MODE_STATE:

break;
};

return 1;
}

int ModeStateClass_evShutDown(ModeStateClass* const me) {

354 Chapter 5

switch (me->currentState) {
case OPERATIONAL_STATE:

Light_setMode(me->itsLightController->itsLight, SLOWLY);

me->currentState = SHUTTINGDOWN_STATE;

break;

case STARTINGUP_STATE:

Light_setMode(me->itsLightController->itsLight, SLOWLY);

me->currentState = SHUTTINGDOWN_STATE;

break;

case SHUTTINGDOWN_STATE:

break;

case NULL_MODE_STATE:

break;

};

return 1;

}

void ModeStateClass_exitAction(ModeStateClass* const me) {

}

int ModeStateClass_is_in(ModeStateClass* const me, ModeStatesType s) {

return s == me->currentState;

}

struct LightController* ModeStateClass_getItsLightController(const ModeStateClass*
const me) {
return (struct LightController*)me->itsLightController;

}

void ModeStateClass_setItsLightController(ModeStateClass* const me, struct LightCon
troller* p_LightController) {
me->itsLightController = p_LightController;

}

ModeStateClass * ModeStateClass_Create(void) {

ModeStateClass* me = (ModeStateClass *)

malloc(sizeof(ModeStateClass));

if(me!=NULL)

ModeStateClass_Init(me);

return me;

}

void ModeStateClass_Destroy(ModeStateClass* const me) {

if(me!=NULL)

ModeStateClass_Cleanup(me);

free(me);

}

static void cleanUpRelations(ModeStateClass* const me) {

if(me->itsLightController != NULL)

me->itsLightController = NULL;

}

Code Listing 5-38: ModeStateClass.c

Design Patterns for State Machines 355

Figure 5-25 shows a sample run of the model shown in Figure 5-24 in which the
LightControllerClient sends the events evEnable, evError, evRun, and then
evAbort. Note the use of the is_in() function to make sure that the preconditions of the
join are met before the event is taken.

Figure 5-25: Sample execution of and-state example

356 Chapter 5

5.9 OK, What Have We Learned?
This chapter presents a number of patterns for the implementation of state machines. Each of
these implementation patterns offers benefits and costs, so which you use depends upon what
you are trying to optimize. The Single Event Receptor Pattern uses a single event receptor and
implements the state behavior internally as a large switch-case statement. It requires the
creation of a type associated with the event to pass to the receptor. In contrast, the Multiple
Event Receptor Pattern uses separate event handlers for each event so that the event type is not
explicitly represented. This makes the interface to the client slightly richer. The State Table
Pattern scales up to large state spaces and provides performance that is independent of the size
of the state space – good for large state spaces. However, it takes more set-up time than the
other approaches and may waste memory for sparse state spaces. The State Pattern creates
separate objects for each state. The implementation is less complex than for the State Table
Pattern and distributes the complexity of the state machine across several objects. The
Decomposed And-State Pattern provides a straightforward way of implementing AND-states
but requires the use of polymorphism.

CHAPTER 6

Safety and Reliability Patterns

Chapter Outline
6.1 A Little Bit About Safety and Reliability 359

6.1.1 Safety and Reliability Related Faults 360

6.1.2 Achieving Safety and Reliability 361

6.2 One’s Complement Pattern 362

6.2.1 Abstract 362

6.2.2 Problem 362

6.2.3 Pattern Structure 362

6.2.4 Collaboration Roles 362

6.2.4.1 DataClient 362

6.2.4.2 OnesCompProtectedDataElement 362

6.2.5 Consequences 363

6.2.6 Implementation Strategies 363

6.2.7 Related Patterns 363

6.2.8 Example 363

6.3 CRC Pattern 367

6.3.1 Abstract 367

6.3.2 Problem 367

6.3.3 Pattern Structure 368

6.3.4 Collaboration Roles 368

6.3.4.1 computeCRCData Function 368

6.3.4.2 CRCProtectedData 368

6.3.4.3 DataClient 368

6.3.4.4 DataType 368

6.3.5 Consequences 369

6.3.6 Implementation Strategies 369

6.3.7 Related Patterns 369

6.3.8 Example 369

6.4 Smart Data Pattern 380

6.4.1 Abstract 380

6.4.2 Problem 381

6.4.3 Pattern Structure 381

6.4.4 Collaboration Roles 382

6.4.4.1 ErrorCodeType 382

6.4.4.2 ErrorManager 382

6.4.4.3 ServerClass 382

6.4.4.4 SmartDataType 382

6.4.5 Consequences 382

Design Patterns for Embedded Systems in C
DOI:10.1016/B978-1-85617-707-8.00006-6
Copyright © 2011 Elsevier Inc. 357

358 Chapter 6

6.4.6 Implementation Strategies 383

6.4.7 Related Patterns 383

6.4.8 Example 383

6.5 Channel Pattern 395

6.5.1 Abstract 395

6.5.2 Problem 395

6.5.3 Pattern Structure 395

6.5.4 Collaboration Roles 395

6.5.4.1 AbstractDataTransform 395

6.5.4.2 ActuatorDeviceDriver 396

6.5.4.3 ConcreteDataTransform 396

6.5.4.4 SensorDeviceDriver 396

6.5.5 Consequences 396

6.5.6 Implementation Strategies 397

6.5.7 Related Patterns 397

6.5.8 Example 397

6.6 Protected Single Channel Pattern 402

6.6.1 Abstract 402

6.6.2 Problem 402

6.6.3 Pattern Structure 403

6.6.4 Collaboration Roles 404

6.6.4.1 AbstractDataTransform 404

6.6.4.2 AbstractTransformChecker 404

6.6.4.3 ActuatorDeviceDriver 404

6.6.4.4 ConcreteDataTransform 404

6.6.4.5 ConcreteTransformChecker 404

6.6.4.6 SensorDeviceDriver 404

6.6.5 Implementation Strategies 405

6.6.6 Related Patterns 405

6.6.7 Example 405

6.7 Dual Channel Pattern 413

6.7.1 Abstract 413

6.7.2 Problem 414

6.7.3 Pattern Structure 414

6.7.4 Collaboration Roles 414

6.7.4.1 AbstractDataTransform 414

6.7.4.2 AbstractTransformChecker 414

6.7.4.3 ActuatorDeviceDriver 415

6.7.4.4 Channel 416

6.7.4.5 ConcreteDataTransform 416

6.7.4.6 ConcreteTransformChecker 417

6.7.4.7 SensorDeviceDriver 417

6.7.5 Consequences 417

6.7.6 Implementation Strategies 417

6.7.7 Related Patterns 417

6.7.7.1 Homogeneous Redundancy Pattern 417

6.7.7.2 Heterogeneous Redundancy Pattern 418

Safety and Reliability Patterns 359

6.7.7.3 Triple Modular Redundancy (TMR) Pattern 418
6.7.7.4 Sanity-Check Pattern 419
6.7.7.5 Monitor-Actuator Pattern 420

6.7.8 Example 421

6.8 Summary 422

Patterns in this chapter
One’s Complement Pattern – Adds a bitwise inverted copy of primitive data elements to identify
when data is corrupted in vivo

CRC Pattern – Adds a cyclic redundancy check to identify when bits of the data have been
corrupted in vivo

Smart Data Pattern – Adds behavior to the data to ensure that the data’s preconditions and
constraints are adhered to

Channel Pattern – Arranges the processing of sensory data as a series of transformational steps
to provide a unit of large-scale redundancy

Protected Single Channel Pattern – Elaborates the channel pattern by adding data and proces
sing validation checks at various points within the single channel

Dual Channel Pattern – Creates multiple channels to aid in the identification of errors and
failures and, optionally, allows continuation of service in the presence of such as fault

6.1 A Little Bit About Safety and Reliability
Reliability is a measure of the “up-time” or “availability” of a system – specifically, it is the
probability that a computation will successfully complete before the system fails. Put another
way, it is a stochastic measure of the probability that the system can deliver a service. It is
normally estimated with Mean Time Between Failure (MTBF) or a probability of successful
service delivery (e.g., 0.9999). Reliability analysis is normally managed within Fault Means
and Effect Analysis (FMEA) such as shown in Figure 6.1.

Safety is distinct from reliability. A safe system is one that does not incur too much risk to
persons or equipment. A hazard is an event or condition that leads to an accident or mishap – a
loss of some kind, such as injury or death. The risk associated with a hazard is the product of
the severity of the hazard and its likelihood.

Hazards arise in five fundamental ways:

• Release of energy
• Release of toxins
• Interference of life support functions
• Supplying misleading information to safety personnel or control systems
• Failure to alarm when hazardous conditions arise

Description Function Failure Failure Mode Failure Potential Cases Corrective Criticality
Rate / Effects Actions
million hrs

O2 Sensor Senses
O2 conc
in the
blood

110 LED fails System
cannot
determine O2
conc

• Power
disconnect

• LED emitter
fails

• use gold
contacts

• Use high
rated LED

High

1750 Connection to
system fails

System
cannot

• RS232 wire
disconnect

• Use high
rated

High

determine O2 • EMI connectors
conc • Use message

CRCs
Display of
O2 conc

Displays
patient
data to
physician

6000 Wrong value
displayed

Misdiagnosis
and
mistreatment
of acute
conditions

• Internal data
corruption

• Computation
error

• Data stored
redundantly

• Computation
done with
two separate
algorithms

High

…
…
…
…

360 Chapter 6

Figure 6-1: FMEA example

6.1.1 Safety and Reliability Related Faults

Accidents can occur either because the system contains errors or because some aspect of the
system fails. An error is a systematic fault and may be due to incorrect requirements, poor
design or poor implementation. An error is always present in the system even though it may not
be visible. When an error is visible, it is said to be manifest. Failures are different in that they
occur at some point in time and result in a failed state. That is, the system worked properly
before but something changed, such as a metal rod breaking in the drive train of your car (a
persistent failure) or a bit was flipped in your car’s engine control computer but is repaired as
the system runs (a volatile failure). A fault is either an error or a failure.

I make this distinction about the different kinds of faults because the kinds of mitigation
behavior for the two kinds is different. Specifically, failures can be addressed by homoge
neous redundancy – multiple replicas of the processing channel (a set of software elements).
If you assume the system is safe enough if it remains safe in the case of a single point failure,
then having an identical backup channel can address such a failure. However, if the fault is an
error, then all identical copies of the channel will exhibit the same fault. In this case, you
must have heterogeneous redundancy (also known as n-way programming) – multiple
channels that provide the service using different code and/or designs-in order to continue
functioning safely.

Faults have relations to various elements in your system. Behavior around faults may be
specified in requirements. An element can be the source of the fault. Another element may be
the identifier of the fault. Yet another element may mitigate or extenuate the fault.

Safety and Reliability Patterns 361

I believe that there is no such thing as “safe software” because it is the composite system – the
electronics, mechanical, and software aspects working together in their operational environ
ment – that is safe or unsafe. Hardware faults can be mitigated with software and vice versa.
The system as a whole is safe or unsafe. Similarly, the reliability of a system is a function of all
its constituent parts, since other parts can be designed to continue to provide services normally
provided by failed parts. There is extensive literature on how to assess safety and reliability and
how to construct safe and reliable systems, but a detailed discussion of those topics is beyond
the scope of this book. More information can be had in my Real-Time UML Workshop for
Embedded Systems or my Real-Time Agility books1 as well as many other sources.

6.1.2 Achieving Safety and Reliability

In general, all safety-critical systems and high-reliability systems must contain and properly
manage redundancy to achieve their safety and reliability requirements. How these elements are
managed is different depending on the particular mix of safety and reliability concerns. This
redundancy can be “redundancy-in-the-large” (architectural redundancy) or “redundancy-in
the-small” (detailed design redundancy). In this chapter we will consider a few patterns of both
varieties. More safety-related architectural patterns can be found in my book Real-Time Design
Patterns2.

In the safety and reliability patterns in this chapter, there are three kinds of related elements.
Fault Manifestors are elements that can, if they contain a fault, lead to a safety or reliability
concern. Fault Identifiers are elements that can identify when a failure has occurred or when an
error has become manifest. Fault Extenuators are elements that extenuate (reduce) a fault by
either making the fault-related hazard less severe or by making the manifestation of the fault at
the system level less likely. The patterns in this chapter differ in how these elements are
organized and managed. Feedforward error correction patterns address the concern by provid
ing enough redundancy to identify and deal with the fault and continue processing. Feedback
error correction patterns address the faults by repeating one or more computational steps. Fault-
safe state patterns address safety by going to a fault-safe state, but this reduces the reliability of
the system3.

And now, let’s get to the patterns. First we’ll start with some detailed design-level patterns,
which some people call idioms.

1 Douglass, B.P., 2009. Real-Time UML Workshop for Embedded Systems. Elsevier. Douglass, B.P., 2009. Real-
Time Agility. Addison-Wesley.

2 Douglass, B.P., 2002. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems. Addison-
Wesley.

3 In general, safety and reliability are opposing concerns when there is a fault-safe state and they are cooperating
concerns when there is not.

362 Chapter 6

6.2 One’s Complement Pattern
The One’s Complement Pattern is useful to detect when memory is corrupted by outside
influences or hardware faults.

6.2.1 Abstract

The One’s Complement Pattern provides a detailed design pattern for the identification
of single or multiple memory bit corruption. This can occur due to EMI (Electromagnetic
interference), heat, hardware faults, software faults, or other external causes. The pattern
works by storing critical data twice – once in normal form and once in one’s complement
(bit-wise inverted) form. When the data are read, the one’s complement form is reinverted and
then compared to the value of the normal form. If the values match, then that value is
returned, otherwise error processing ensues.

6.2.2 Problem

This pattern addresses the problem that variables may be corrupted by a variety of causes such
as environmental factors (e.g., EMI, heat, radiation), hardware faults (e.g., power fluctuation,
memory cell faults, address line shorts), or software faults (other software erroneously mod
ifying memory). This pattern addresses the problem of identifying data corruption for small sets
of critical data values.

6.2.3 Pattern Structure

The basic pattern structure is shown in Figure 6-2. Since this is a detailed design pattern, its
scope is primarily within a single class.

6.2.4 Collaboration Roles

This section describes the roles for this pattern.

6.2.4.1 DataClient
The DataClient is an element that either sets or retrieves the value of the datum.

6.2.4.2 OnesCompProtectedDataElement
The OnesCompProtectedDataElement is the class that combines the storage of the data
with services that can detect bit-level data corruption. This class stores the values of the data
twice; once in regular form and once as a bit-wise complement. When data are retrieved,
inverted data are reinverted and compared to the value stored normally. If the values match, that
value is returned; if not, the class provides a function to handle the error. The actual behavior of
the error handler is system- and context-specific.

Safety and Reliability Patterns 363

Figure 6-2: One’s Complement Pattern

6.2.5 Consequences

This pattern uses twice the memory for storage of critical data; in addition, there is some
performance hit on both data storage and retrieval. On the plus side, the pattern can identify
errors due to EMI or due to stuck or shorted memory or address bits.

6.2.6 Implementation Strategies

This pattern is very easy to implement in C. For primitive types, the ~ operator computes the
bit inversion. For structured types, you must iterate over the primitive parts of the data (see the
example below).

6.2.7 Related Patterns

This pattern provides a very reliable way to identify faults that affect a single memory location. For
very large data structures, the memory impact of complete data replication may be too large; in such
cases, the Cyclic Redundancy Check (CRC) Pattern provides a reasonably reliable alternative.

6.2.8 Example

Figure 6-3 shows a simple application of this pattern. OwnShipAttitude stores the attitude
(orientation, as specified in its attributes roll, pitch, and yaw) using the One’s Complement
Pattern. When the getAttitude() function is called, it reinverts the inverted copy and

364 Chapter 6

Figure 6-3: One’s Complement example

compares it to normally stored values. If there is a difference, then the errorHandler()

function is invoked which, in this case, calls the addAlarm() function of the AlarmHandler.
If the values are the same, the value is returned to the client.

The code for the OwnShipAttitude (fulfilling the role of the
OnesCompProtectedDataElement in the pattern) is shown in Code Listing 6-1 and Code
Listing 6-2. Note that the error code passed to the alarm manager ATTITUDE_MEMORY_FAULT

is simply a #define-d value.

Safety and Reliability Patterns 365

#ifndef OwnShipAttitude_H

#define OwnShipAttitude_H

#include "AttitudeDataType.h"

struct AlarmManager;

typedef struct OwnShipAttitude OwnShipAttitude;
struct OwnShipAttitude {

struct AttitudeDataType attitude;

struct AttitudeDataType invertedAttitude;

struct AlarmManager* itsAlarmManager;

};

void OwnShipAttitude_Init(OwnShipAttitude* const me);

void OwnShipAttitude_Cleanup(OwnShipAttitude* const me);

/* Operations */

void OwnShipAttitude_errorHandler(OwnShipAttitude* const me);

int OwnShipAttitude_getAttitude(OwnShipAttitude* const me, AttitudeDataType * aPtr);

AttitudeDataType OwnShipAttitude_invert(OwnShipAttitude* const me, AttitudeDataType a);

void OwnShipAttitude_setAttitude(OwnShipAttitude* const me, AttitudeDataType a);

struct AlarmManager* OwnShipAttitude_getItsAlarmManager(const OwnShipAttitude* const me);

void OwnShipAttitude_setItsAlarmManager(OwnShipAttitude* const

me, struct AlarmManager* p_AlarmManager);

OwnShipAttitude * OwnShipAttitude_Create(void);

void OwnShipAttitude_Destroy(OwnShipAttitude* const me);

#endif

Code Listing 6-1: OwnShipAttitude.h

#include "OwnShipAttitude.h"

#include "AlarmManager.h"

static void cleanUpRelations(OwnShipAttitude* const me);

void OwnShipAttitude_Init(OwnShipAttitude* const me) {

AttitudeDataType_Init(&(me->attitude));

AttitudeDataType_Init(&(me->invertedAttitude));

me->itsAlarmManager = NULL;

}

void OwnShipAttitude_Cleanup(OwnShipAttitude* const me) {

366 Chapter 6

cleanUpRelations(me);
}

void OwnShipAttitude_errorHandler(OwnShipAttitude* const me) {
AlarmManager_addAlarm(me->itsAlarmManager,

ATTITUDE_MEMORY_FAULT);
}

int OwnShipAttitude_getAttitude(OwnShipAttitude* const me,
AttitudeDataType * aPtr) {
AttitudeDataType ia = OwnShipAttitude_invert(me, me- >invertedAttitude);

if (me->attitude.roll == ia.roll && me->attitude.yaw == ia.yaw &&

me->attitude.pitch == ia.pitch) {

*aPtr = me->attitude;

return 1;

}

else {

OwnShipAttitude_errorHandler(me);

return 0;

};

}

AttitudeDataType OwnShipAttitude_invert(OwnShipAttitude* const
me, AttitudeDataType a) {
a.roll = ~a.roll;
a.yaw = ~a.yaw;
a.pitch = ~a.pitch;
return a;

}

void OwnShipAttitude_setAttitude(OwnShipAttitude* const me,
AttitudeDataType a) {
me->attitude = a;
me->invertedAttitude = OwnShipAttitude_invert(me, a);

}

struct AlarmManager* OwnShipAttitude_getItsAlarmManager(const
OwnShipAttitude* const me) {
return (struct AlarmManager*)me->itsAlarmManager;

}

void OwnShipAttitude_setItsAlarmManager(OwnShipAttitude* const
me, struct AlarmManager* p_AlarmManager) {
me->itsAlarmManager = p_AlarmManager;

}

OwnShipAttitude * OwnShipAttitude_Create(void) {
OwnShipAttitude* me = (OwnShipAttitude *)

malloc(sizeof(OwnShipAttitude));

Safety and Reliability Patterns 367

if(me!=NULL)

OwnShipAttitude_Init(me);

return me;

}

void OwnShipAttitude_Destroy(OwnShipAttitude* const me) {

if(me!=NULL)

OwnShipAttitude_Cleanup(me);

free(me);

}

static void cleanUpRelations(OwnShipAttitude* const me) {

if(me->itsAlarmManager != NULL)

me->itsAlarmManager = NULL;

}

Code Listing 6-2: OwnShipAttitude.c

6.3 CRC Pattern
The Cyclic Redundancy Check (CRC) Pattern calculates a fixed-size error-detection code based
on a cyclic polynomial that can detect corruption in data sets far larger than the size of the code.

6.3.1 Abstract

The CRC Pattern computes a fixed-length binary code, called a CRC value, on your data to
detect whether or not they have been corrupted. This code is stored in addition to the data
values and is set when data are updated and checked when data are read.

A detailed explanation of the mathematics is beyond the scope of this book4 but CRCs are both
common and useful in practice. CRCs are characterized by the bit-length of the polynomials
used to compute them. While algorithmic computation can be complex and time consuming,
table-driven algorithms are quite time efficient. CRCs provide good detection of single and
multiple bit errors for arbitrary length data fields and so are good for large data structures.

6.3.2 Problem

This pattern addresses the problem that variables may be corrupted by a variety of causes such
as environmental factors (e.g., EMI, heat, radiation), hardware faults (e.g., power fluctuation,
memory cell faults, address line shorts), or software faults (other software erroneously mod
ifying memory). This pattern addresses the problem of data corruption in large data sets.

4	 See for example, “A Painless Guide to CRC Error Detection Algorithms” at http://www.ross.net/crc/download/
crc_v3.txt for more information.

368 Chapter 6

Figure 6-4: CRC Pattern

6.3.3 Pattern Structure

The CRC Pattern structure is shown in Figure 6-4. The CRCProtectedData class uses a
generic computeCRC() function to calculate the CRC over its data. While data are shown as
an array, it can be any contiguous block of data.

6.3.4 Collaboration Roles

This section describes the roles for this pattern.

6.3.4.1 computeCRCData Function
This is a general function for the computation of a CRC of a specific polynomial bit-length.
Common bit lengths include 12, 16, and 32. In practice, this is usually implemented with a
table-driven algorithm for computational efficiency.

6.3.4.2 CRCProtectedData
This is the class that owns and protects the data. When data are stored, the CRC is calculated. When
data are read, the CRC is recalculated and compared to the stored CRC; if the CRCs differ, then the
errorHandler() is called, otherwise the retrieved data are returned to the client.

6.3.4.3 DataClient
The DataClient is the element that stores and/or retrieves data from the CRCProtectedData

class.

6.3.4.4 DataType
The is the base data type of the data structure owned by the CRCProtectedDataClass. This
might be a primitive type, such as int or double, or it may be a complex data type such as an
array or struct.

Safety and Reliability Patterns 369

6.3.5 Consequences

With a little bit of memory used by the CRC data table and a relatively small amount of
computation time to compute the polynomial, this pattern provides good detection of single
(and small number of) bit errors. It is used often in communications messaging because such
connections tend to be extremely unreliable. In addition, it can be used for in-memory error
detection for harsh EMI environments or for mission-critical data. It is excellent for large data
sets with relatively few bit errors.

6.3.6 Implementation Strategies

As mentioned, the table-driven algorithm is almost always used because it provides good
performance with only a minor memory space penalty. If memory is tight, the polynomial
can be computed algorithmically but this has a significant impact on run-time
performance.

6.3.7 Related Patterns

The One’s Complement Pattern replicates the data in a bit-inverted form, and so is useful
for small data sets. This pattern is better for large data sets because it has a smaller
memory impact.

6.3.8 Example

Figure 6-5 shows a medical application of this pattern. In this case, several clients set or get
patient data, which is defined by the PatientDataType. The PatientData class provides
functions to set and get the data, protecting them via calls to the CRCCalculator. A single
CRC protects the entire patient data set.

The code listing in Code Listing 6-3 is adapted from free software written by Jack Klein, and
released under the GNU General Public License Agreement5. It computes a CRC-16 but other
polynomial bit-lengths are available for use.

/* crcccitt.c - a demonstration of look up table based CRC
* computation using the non-reversed CCITT_CRC
* polynomial 0x1021 (truncated)

*

* Copyright (C) 2000 Jack Klein

* Macmillan Computer Publishing

*

5	 For information concerning usage of this code, contact the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA

370 Chapter 6

Figure 6-5: CRC example

* This program is free software; you can redistribute it

* and/or modify it under the terms of the GNU General

* Public License as published by the Free Software

* Foundation; either version 2 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will

* be useful, but WITHOUT ANY WARRANTY; without even the

* implied warranty of MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public License

* for more details.

*

* You should have received a copy of the GNU General

* Public License along with this program; if not, write

* to the Free Software Foundation, Inc., 675 Mass Ave,

* Cambridge, MA 02139, USA.

*

* Jack Klein may be contacted by email at:

* The_C_Guru@yahoo.com

*

Safety and Reliability Patterns 371

* Modified slightly by Bruce Powel Douglass, 2010

*/

/*# # dependency stdio */
#include <stdio.h>
/*# # dependency stdlib */
#include <stdlib.h>
/*# # dependency string */
#include <string.h>

static unsigned short crc_table[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5,
0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b,
0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210,
0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c,
0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401,
0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b,
0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6,
0x5695, 0x46b4, 0xb75b, 0xa77a, 0x9719, 0x8738,
0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5,
0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969,
0xa90a, 0xb92b, 0x5af5, 0x4ad4, 0x7ab7, 0x6a96,
0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc,
0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03,
0x0c60, 0x1c41, 0xedae, 0xfd8f, 0xcdec, 0xddcd,
0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6,
0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a,
0x9f59, 0x8f78, 0x9188, 0x81a9, 0xb1ca, 0xa1eb,
0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1,
0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c,
0xe37f, 0xf35e, 0x02b1, 0x1290, 0x22f3, 0x32d2,
0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb,
0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447,
0x5424, 0x4405, 0xa7db, 0xb7fa, 0x8799, 0x97b8,
0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2,
0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9,
0xb98a, 0xa9ab, 0x5844, 0x4865, 0x7806, 0x6827,
0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c,
0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0,
0x2ab3, 0x3a92, 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d,
0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07,

372 Chapter 6

0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,

0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba,

0x8fd9, 0x9ff8, 0x6e17, 0x7e36, 0x4e55, 0x5e74,

0x2e93, 0x3eb2, 0x0ed1, 0x1ef0

};

unsigned short computeCRC(unsigned char * data, size_t length, unsigned short seed,
unsigned short final) {

size_t count;

unsigned int crc = seed;

unsigned int temp;

for (count = 0; count < length; ++count)
{

temp = (*data++ ^ (crc >> 8)) & 0xff;

crc = crc_table[temp] ^ (crc << 8);

}

return (unsigned short)(crc ^ final);

}

Code Listing 6-3: CRCCalculator.c

The data types used in the example appear in Code Listing 6-4. Note that ErrorCodeType

includes other errors, such as data element out of range, as is common in such applications.

#ifndef CRCExample_H

#define CRCExample_H

struct AlarmManager;

struct BloodO2Sensor;

struct CRCBuilderClass;

struct CRCClient2;

struct DrugDeliverySystem;

struct HositalPatientSystem;

struct NIBP;

struct PatientData;

struct Thermometer;

typedef enum ErrorCodeType {

NO_ERRORS,

UNKNOWN_ERROR,

CORRUPT_DATA,

WEIGHT_TOO_LOW,

WEIGHT_TOO_HIGH,

AGE_TOO_HIGH,

GENDER_OUT_OF_RANGE,

SYSTOLIC_TOO_LOW,

Safety and Reliability Patterns 373

SYSTOLIC_TOO_HIGH,

DIASTOLIC_TOO_LOW,

DIASTOLIC_TOO_HIGH,

TEMPERATURE_TOO_LOW,

TEMPERATIURE_TOO_HIGH,

BLOOD_O2_TOO_LOW,

BLOOD_O2_TOO_HIGH

} ErrorCodeType;

typedef enum GenderType {

MALE,

FEMALE,

HERMAPHRODITE

} GenderType;

typedef struct PatientDataType {

unsigned short age;

unsigned short bloodO2Conc;

unsigned short diastolicBP;

GenderType gender;

unsigned short heartRate;

char name[100];

unsigned long patientID;

unsigned short systolicBP;

unsigned short temperature;

double weight;

} PatientDataType;

#endif

Code Listing 6-4: CRCExample.c

Of course the main action is in the PatientData class code, shown in Code Listing 6-5 and
Code Listing 6-6.

#ifndef PatientData_H

#define PatientData_H

#include "CRCExample.h"

struct AlarmManager;

typedef struct PatientData PatientData;
struct PatientData {

PatientDataType pData;

unsigned short crc;

struct AlarmManager* itsAlarmManager;

};

374 Chapter 6

void PatientData_Init(PatientData* const me);
void PatientData_Cleanup(PatientData* const me);

/* Operations */

void PatientData_errorHandler(PatientData* const me,
ErrorCodeType errCode);

unsigned short PatientData_getAge(PatientData* const me);

unsigned short PatientData_getBloodO2Conc(PatientData* const me);

unsigned short PatientData_getDiastolicBP(PatientData* const me);

GenderType PatientData_getGender(PatientData* const me);

char* PatientData_getName(PatientData* const me);

unsigned long PatientData_getPatientID(PatientData* const me);

unsigned short PatientData_getSystolicBP(PatientData* const me);

unsigned short PatientData_getTemperature(PatientData* const me);

double PatientData_getWeight(PatientData* const me);

void PatientData_setAge(PatientData* const me, unsigned short a);

void PatientData_setBloodO2Conc(PatientData* const me, unsigned short o2);

void PatientData_setDiastolicBP(PatientData* const me, unsigned short dBP);

void PatientData_setGender(PatientData* const me, GenderType g);

void PatientData_setName(PatientData* const me, char* n);

void PatientData_setPatientID(PatientData* const me, unsigned long id);

void PatientData_setSystolicBP(PatientData* const me, unsigned short sBP);

void PatientData_setTemperature(PatientData* const me, unsigned short t);

void PatientData_setWeight(PatientData* const me, double w);

int PatientData_checkData(PatientData* const me);

struct AlarmManager* PatientData_getItsAlarmManager(const PatientData* const me);

Safety and Reliability Patterns 375

void PatientData_setItsAlarmManager(PatientData* const me, struct

AlarmManager* p_AlarmManager);

PatientData * PatientData_Create(void);

void PatientData_Destroy(PatientData* const me);

#endif

Code Listing 6-5: PatientData.h

#include "PatientData.h"

#include "AlarmManager.h"

#include <string.h>

#include <stdio.h>

static void cleanUpRelations(PatientData* const me);

void PatientData_Init(PatientData* const me) {
me->itsAlarmManager = NULL;
strcpy(me->pData.name, " ");
me->pData.patientID = 0;
me->pData.weight = 0;
me->pData.age = 0;
me->pData.gender = HERMAPHRODITE;
me->pData.systolicBP = 0;
me->pData.diastolicBP = 0;
me->pData.temperature = 0;
me->pData.heartRate = 0;
me->pData.bloodO2Conc = 0;
me->crc = computeCRC((unsigned char *)&me->pData, sizeof(me->pData), 0xffff, 0);
}

}

void PatientData_Cleanup(PatientData* const me) {

cleanUpRelations(me);

}

int PatientData_checkData(PatientData* const me) {

unsigned short result = computeCRC((unsigned char *)&me->pData,

sizeof(me->pData), 0xffff, 0);

printf("computed CRC = %d, stored CRC = %d\n", result, me->crc);

return result == me->crc;

}

void PatientData_errorHandler(PatientData* const me,

ErrorCodeType errCode) {

AlarmManager_addAlarm(me->itsAlarmManager, errCode);

}

376 Chapter 6

unsigned short PatientData_getAge(PatientData* const me) {
if (PatientData_checkData(me))

return me->pData.age;
else {

PatientData_errorHandler(me, CORRUPT_DATA);

return 0;

};

}

unsigned short PatientData_getBloodO2Conc(PatientData* const me)
{
if (PatientData_checkData(me))

return me->pData.bloodO2Conc;
else {

PatientData_errorHandler(me, CORRUPT_DATA);

return 0;

};

}

unsigned short PatientData_getDiastolicBP(PatientData* const me)
{
if (PatientData_checkData(me))

return me->pData.diastolicBP;
else {

PatientData_errorHandler(me, CORRUPT_DATA);

return 0;

};

}

GenderType PatientData_getGender(PatientData* const me) {
if (PatientData_checkData(me))

return me->pData.gender;
else {

PatientData_errorHandler(me, CORRUPT_DATA);

return 0;

};

}

char* PatientData_getName(PatientData* const me) {
if (PatientData_checkData(me))

return me->pData.name;
else {

PatientData_errorHandler(me, CORRUPT_DATA);

return 0;

};

}

unsigned long PatientData_getPatientID(PatientData* const me) {
if (PatientData_checkData(me))

return me->pData.patientID;

Safety and Reliability Patterns 377

else {

PatientData_errorHandler(me, CORRUPT_DATA);

return 0;

};

}

unsigned short PatientData_getSystolicBP(PatientData* const me) {
if (PatientData_checkData(me))

return me->pData.systolicBP;
else {

PatientData_errorHandler(me, CORRUPT_DATA);

return 0;

};

}

unsigned short PatientData_getTemperature(PatientData* const me)
{
if (PatientData_checkData(me))

return me->pData.temperature;
else {

PatientData_errorHandler(me, CORRUPT_DATA);

return 0;

};

}

double PatientData_getWeight(PatientData* const me) {
if (PatientData_checkData(me))

return me->pData.weight;
else {

PatientData_errorHandler(me, CORRUPT_DATA);

return 0;

};

}

void PatientData_setAge(PatientData* const me, unsigned short a) {
if (PatientData_checkData(me)) {

me->pData.age = a;
me->crc = computeCRC((unsigned char *)&me->pData, sizeof(me->pData), 0xffff, 0);
if (!PatientData_checkData(me))

PatientData_errorHandler(me, CORRUPT_DATA);

}

else {

printf("Set failed\n");

PatientData_errorHandler(me, CORRUPT_DATA);

};

}

void PatientData_setBloodO2Conc(PatientData* const me, unsigned
short o2) {
if (PatientData_checkData(me)) {

378 Chapter 6

me->pData.bloodO2Conc = o2;

me->crc = computeCRC((unsigned char *)&me->pData, sizeof(me->pData), 0xffff, 0);

if (!PatientData_checkData(me))

PatientData_errorHandler(me, CORRUPT_DATA);

}

else {

printf("Set failed\n");

PatientData_errorHandler(me, CORRUPT_DATA);

};

}

void PatientData_setDiastolicBP(PatientData* const me, unsigned short dBP) {
if (PatientData_checkData(me)) {

me->pData.diastolicBP = dBP;
me->crc = computeCRC((unsigned char *)&me->pData, sizeof(me->pData), 0xffff, 0);
if (!PatientData_checkData(me))

PatientData_errorHandler(me, CORRUPT_DATA);

}

else {

printf("Set failed\n");

PatientData_errorHandler(me, CORRUPT_DATA);

};

}

void PatientData_setGender(PatientData* const me, GenderType g) {
if (PatientData_checkData(me)) {

me->pData.gender = g;
me->crc = computeCRC((unsigned char *)&me->pData, sizeof(me->pData), 0xffff, 0);
if (!PatientData_checkData(me))

PatientData_errorHandler(me, CORRUPT_DATA);

}

else {

printf("Set failed\n");

PatientData_errorHandler(me, CORRUPT_DATA);

};

}

void PatientData_setName(PatientData* const me, char* n) {
if (PatientData_checkData(me)) {

strcpy(me->pData.name, n);
me->crc = computeCRC((unsigned char *)&me->pData, sizeof(me->pData), 0xffff, 0);
if (!PatientData_checkData(me))

PatientData_errorHandler(me, CORRUPT_DATA);

}

else {

printf("Set failed\n");

PatientData_errorHandler(me, CORRUPT_DATA);

};

}

void PatientData_setPatientID(PatientData* const me, unsigned long id) {
if (PatientData_checkData(me)) {

Safety and Reliability Patterns 379

me->pData.patientID = id;

me->crc = computeCRC((unsigned char *)&me->pData, sizeof(me->pData), 0xffff, 0);

if (!PatientData_checkData(me))

PatientData_errorHandler(me, CORRUPT_DATA);

}

else {

printf("Set failed\n");

PatientData_errorHandler(me, CORRUPT_DATA);

};

}

void PatientData_setSystolicBP(PatientData* const me, unsigned short sBP) {
if (PatientData_checkData(me)) {

me->pData.systolicBP = sBP;
me->crc = computeCRC((unsigned char *)&me->pData, sizeof(me->pData), 0xffff, 0);
if (!PatientData_checkData(me))

PatientData_errorHandler(me, CORRUPT_DATA);

}

else {

printf("Set failed\n");

PatientData_errorHandler(me, CORRUPT_DATA);

};

}

void PatientData_setTemperature(PatientData* const me, unsigned short t) {
if (PatientData_checkData(me)) {

me->pData.temperature = t;
me->crc = computeCRC((unsigned char *)&me->pData, sizeof(me->pData), 0xffff, 0);
if (!PatientData_checkData(me))

PatientData_errorHandler(me, CORRUPT_DATA);

}

else {

printf("Set failed\n");

PatientData_errorHandler(me, CORRUPT_DATA);

};

}

void PatientData_setWeight(PatientData* const me, double w) {
if (PatientData_checkData(me)) {

me->pData.weight = w;
me->crc = computeCRC((unsigned char *)&me->pData, sizeof(me->pData), 0xffff, 0);
if (!PatientData_checkData(me))

PatientData_errorHandler(me, CORRUPT_DATA);

}

else {

printf("Set failed\n");

PatientData_errorHandler(me, CORRUPT_DATA);

};

}

struct AlarmManager* PatientData_getItsAlarmManager(const PatientData* const me) {
return (struct AlarmManager*)me->itsAlarmManager;

}

380 Chapter 6

void PatientData_setItsAlarmManager(PatientData* const me, struct AlarmManager*
p_AlarmManager) {
me->itsAlarmManager = p_AlarmManager;

}

PatientData * PatientData_Create(void) {

PatientData* me = (PatientData *) malloc(sizeof(PatientData));

if(me!=NULL)

PatientData_Init(me);

return me;

}

void PatientData_Destroy(PatientData* const me) {

if(me!=NULL)

PatientData_Cleanup(me);

free(me);

}

static void cleanUpRelations(PatientData* const me) {

if(me->itsAlarmManager != NULL)

me->itsAlarmManager = NULL;

}

Code Listing 6-6: PatientData.c

6.4 Smart Data Pattern
One of the biggest problems I see with embedded C code in actual application is that functions all
have preconditions for their proper execution but these functions don’t explicitly check that those
preconditons are actually satisfied. This falls under the heading of what is commonly known as
“defensive design” – a development paradigm in which we design with proactive run-time defenses
in place to detect problems. The Smart Data Pattern codifies that paradigm for scalar data elements.

6.4.1 Abstract

One of the reasons that languages such as Ada are considered “safer6” than C is that they have
run-time checking. These checks include array index range checking, definition of subtypes
and subranges (such as defining a subtype Color to be not only limited to a set of colors but
generate errors if that range is exceeded), and parameter range checks. Indeed although the C++
language is not inherently “safe” by this standard, because data structures may be bound
together with operations that provide run-time checking, it can be made “safe” by intention if
not by default. This pattern, although landing more within the accepted range of “idiom” rather
than “pattern,” addresses those concerns by creating C classes that explicitly perform these
checks.

6 Using the term loosely and not in the precise sense defined in this chapter.

Safety and Reliability Patterns 381

6.4.2 Problem

The most common idiom for error checking of data ranges in C is for functions that have no
other return value: return a 0 value for function success and a -1 value for failure and set errno

to an error code.

The problem is, of course, that the most common way to “handle” the return values is to ignore
them, resulting in difficult-to-debug systems. Some people even put error checking into the
system during development but remove such checks in the final release. I would argue that the
time when you really want to know that the altitude determination program in your aircraft isn’t
producing the right value is when you are in the flying aircraft.

The problem this pattern addresses is to build functions and data types that essentially check
themselves and provide error detection means that cannot be easily ignored.

6.4.3 Pattern Structure

As mentioned above, this pattern falls into the idiomatic (tiny pattern) range rather than a
collaboration pattern. The key concepts of the pattern are to 1) build self-checking types
whenever possible; 2) check incoming parameter values for appropriate range checking; and 3)
check consistency and reasonableness among one or a set of parameters. Figure 6-6 shows the
structure of the pattern.

Figure 6-6: Smart Data Pattern

382 Chapter 6

6.4.4 Collaboration Roles

This section describes the roles for this pattern.

6.4.4.1 ErrorCodeType
The ErrorCodeType is an enumeration of possible error codes. This can be, and is often, done
with ints but enums clarify the intention and usage of the codes more clearly.

6.4.4.2 ErrorManager
The ErrorManager class handles the errors identified within the SubrangeType; the actions
are system-, context-, and error-specific.

6.4.4.3 ServerClass
This role in the pattern is an element that uses the SmartDataType.

6.4.4.4 SmartDataType
One of the disadvantages of data structures is that while they all have preconditions and
rules for proper usage, they have no intrinsic behavior to enforce the conditions and rules.
This class binds together the data (of type PrimitiveType) with operations that ensure
they stay in range.

This class provides a variety of functions. The SmartDataType_Init() function takes
five parameters – the me pointer to point to the instance data, the initial value being
set, the low and high values specifying the valid data subrange, and the address of the
ErrorManager. If the entire range of the primitive type is valid, then you can simply use
the primitive type or use the low and high values to the min and max for the type (such as
SHRT_MIN and SHRT_MAX, or INT_MIN and INT_MAX declared in <limits.h>, for example).
To create a new instance on the heap, simply use SmartDataType_Create(), which
takes three parameters – the value, the low boundary, and the high boundary and returns a
pointer to the newly created instance.

SmartDataTypes can be assigned to each other with the SmartDataType_setValue()

and SmartDataType_getValue() functions and compared with the boundary with the
SmartDataType_cmp() function and without the boundaries with the SmartDataType_pCmp()

function. The held data can be independently set with the SmartDataType_setPrimitive()

and SmartDataType_getPrimitive() functions. The low and high boundaries can also be set
and read independently.

6.4.5 Consequences

The downside for using smart data types is the performance overhead for executing
the operations. The upside is that data are self-protecting and provide automatic checking
when data are set. It is also possible for the programmers to avoid using the functions

Safety and Reliability Patterns 383

and access the values directly if they are so inclined, defeating the purpose of the smart
data type.

6.4.6 Implementation Strategies

The key implementation strategy is to create a struct with a set of defined operations, and then
only use those operations to access the values. The pattern can be extended to include an
enumerated type of the units of the value when dealing with numbers with units, such as
currency (e.g., euro and dollar), mass (such as pounds, kilograms), and distance (such as inches,
feet, yards, fathoms, miles, and even meters). This is a useful extension when dealing with data
from different clients that may require conversion. The conversion functions can be built into
the class so that you both set and get the values in a specified unit.

6.4.7 Related Patterns

The idea of building smart types is extended pointers with the Smart Pointer Pattern.

6.4.8 Example

Figure 6-7 shows a simple medical example of using smart data types. The ServerClass role
from the pattern is fulfilled by the PatientDataClass in the figure. It has three SmartInt
variables (weight, age, and heart rate) and two SmartColor variables (foreground color and
background color). I included the use of an enumerated type ColorType to show how the
pattern can be used for types other than built-in types.

Code Listing 6-7 gives the basic use types for the example.

#ifndef SmartDataExample_H

#define SmartDataExample_H

struct AlarmManager;

struct PatientDataClass;

struct SmartColor;

struct SmartDataClient;

struct SmartInt;

typedef enum ErrorCodeType {

NO_ERRORS,

BELOW_RANGE,

ABOVE_RANGE,

INCONSISTENT_VALUE,

ILLEGAL_USE_OF_NULL_PTR,

INDEX_OUT_OF_RANGE

} ErrorCodeType;

384 Chapter 6

Figure 6-7: Smart Data example

typedef enum ColorType {
BLACK,
BROWN,
RED,
PINK,
BLUE,
GREEN,
YELLOW,
WHITE

}
ColorType;

#endif

Code Listing 6-7: SmartDataExample.h

The SmartInt data type is used for three variables in the PatientDataClass. It provides
the basic functions identified in the SmartData role of the pattern, where int is the primitive
type. Its code is shown in Code Listing 6-8 and Code Listing 6-9.

Safety and Reliability Patterns 385

#ifndef SmartInt_H

#define SmartInt_H

#include "SmartDataExample.h"
struct AlarmManager;

typedef struct SmartInt SmartInt;
struct SmartInt {
ErrorCodeType errorCode;
int highRange;
int lowRange;
int value;
struct AlarmManager* itsAlarmManager;

};

/* Constructors and destructors:*/
void SmartInt_Init(SmartInt* const me, int val, int low, int
high, struct AlarmManager* errMgr);

void SmartInt_Cleanup(SmartInt* const me);

/* Operations */
ErrorCodeType SmartInt_checkValidity(SmartInt* const me);

int SmartInt_cmp(SmartInt* const me, SmartInt s);

void SmartInt_errorHandler(SmartInt* const me, ErrorCodeType err);

ErrorCodeType SmartInt_getErrorCode(SmartInt* const me);

int SmartInt_getHighBoundary(SmartInt* const me);

int SmartInt_getLowBoundary(SmartInt* const me);

int SmartInt_getPrimitive(SmartInt* const me);

SmartInt SmartInt_getValue(SmartInt* const me);

int SmartInt_pCmp(SmartInt* const me, SmartInt s);

void SmartInt_setHighBoundary(SmartInt* const me, int high);

void SmartInt_setLowBoundary(SmartInt* const me, int low);

ErrorCodeType SmartInt_setPrimitive(SmartInt* const me, int p);

ErrorCodeType SmartInt_setValue(SmartInt* const me, SmartInt s);

struct AlarmManager* SmartInt_getItsAlarmManager(const SmartInt* const me);

386 Chapter 6

void SmartInt_setItsAlarmManager(SmartInt* const me, struct

AlarmManager* p_AlarmManager);

SmartInt * SmartInt_Create(int val, int low, int high, struct AlarmManager* errMgr);

void SmartInt_Destroy(SmartInt* const me);

#endif

Code Listing 6-8: SmartInt.h

#include "SmartInt.h"

#include "AlarmManager.h"

static void cleanUpRelations(SmartInt* const me);

void SmartInt_Init(SmartInt* const me, int val, int low, int
high, struct AlarmManager* errMgr) {

me->errorCode = NO_ERRORS;

me->itsAlarmManager = NULL;

me->lowRange = low;

me->highRange = high;

me->value = val;

me->itsAlarmManager = errMgr;

}

void SmartInt_Cleanup(SmartInt* const me) {

cleanUpRelations(me);

}

ErrorCodeType SmartInt_checkValidity(SmartInt* const me) {

if (me->value < me->lowRange)

return BELOW_RANGE;

else if (me->value > me->highRange)

return ABOVE_RANGE;

else

return NO_ERRORS;

}

int SmartInt_cmp(SmartInt* const me, SmartInt s) {

return memcmp(me, &s, sizeof(s));

}

void SmartInt_errorHandler(SmartInt* const me, ErrorCodeType err) {

AlarmManager_addAlarm(me->itsAlarmManager, err);

}

ErrorCodeType SmartInt_getErrorCode(SmartInt* const me) {

return me->errorCode;

}

Safety and Reliability Patterns 387

int SmartInt_getHighBoundary(SmartInt* const me) {
return me->highRange;

}
int SmartInt_getLowBoundary(SmartInt* const me) {
return me->lowRange;

}

int SmartInt_getPrimitive(SmartInt* const me) {
return me->value;

}

SmartInt SmartInt_getValue(SmartInt* const me) {
/*#[operation getValue() */
return *me;
/*#]*/

}

int SmartInt_pCmp(SmartInt* const me, SmartInt s) {
int a = SmartInt_getPrimitive(&s);
return memcmp(&me->value, &a, sizeof(me->value));

}

void SmartInt_setHighBoundary(SmartInt* const me, int high) {
me->highRange = high;

}

void SmartInt_setLowBoundary(SmartInt* const me, int low) {
me->lowRange = low;

}

ErrorCodeType SmartInt_setPrimitive(SmartInt* const me, int p) {
me->errorCode = NO_ERRORS;
if (p < me->lowRange) {

me->errorCode = BELOW_RANGE;
AlarmManager_addAlarm(me->itsAlarmManager, me->errorCode);
}

else if (p > me->highRange) {
me->errorCode = ABOVE_RANGE;
AlarmManager_addAlarm(me->itsAlarmManager, me->errorCode);
}

else

me->value = p;

return me->errorCode;
}

ErrorCodeType SmartInt_setValue(SmartInt* const me, SmartInt s) {
me->errorCode = SmartInt_checkValidity(&s);
if (me->errorCode == NO_ERRORS)

*me = s;

else

SmartInt_errorHandler(me, me->errorCode);

388 Chapter 6

return me->errorCode;

}

struct AlarmManager* SmartInt_getItsAlarmManager(const SmartInt* const me) {

return (struct AlarmManager*)me->itsAlarmManager;

}

void SmartInt_setItsAlarmManager(SmartInt* const me, struct

AlarmManager* p_AlarmManager) {

me->itsAlarmManager = p_AlarmManager;

}

SmartInt * SmartInt_Create(int val, int low, int high, struct AlarmManager* errMgr) {
SmartInt* me = (SmartInt *) malloc(sizeof(SmartInt));
if(me!=NULL)

SmartInt_Init(me, val, low, high, errMgr);

return me;

}

void SmartInt_Destroy(SmartInt* const me) {

if(me!=NULL)

SmartInt_Cleanup(me);

free(me);

}

static void cleanUpRelations(SmartInt* const me) {

if(me->itsAlarmManager != NULL)

me->itsAlarmManager = NULL;

}

Code Listing 6-9: SmartInt.c

Similarly, the code for the SmartColor class is given in Code Listing 6-10 and Code
Listing 6-11.

#ifndef SmartColor_H

#define SmartColor_H

#include "SmartDataExample.h"

#include "SmartInt.h"

struct AlarmManager;

typedef struct SmartColor SmartColor;
struct SmartColor {

ErrorCodeType errorCode;

ColorType highRange;

ColorType lowRange;

ColorType value;

Safety and Reliability Patterns 389

struct AlarmManager* itsAlarmManager;

};

/* Constructors and destructors:*/

void SmartColor_Init(SmartColor* const me, ColorType val, ColorType low,

ColorType high, struct AlarmManager* errMgr);

void SmartColor_Cleanup(SmartColor* const me);

/* Operations */

ErrorCodeType SmartColor_checkValidity(SmartColor* const me);

int SmartColor_cmp(SmartColor* const me, SmartColor s);

void SmartColor_errorHandler(SmartColor* const me, ErrorCodeType err);

ErrorCodeType SmartColor_getErrorCode(SmartColor* const me);

ColorType SmartColor_getHighBoundary(SmartColor* const me);

ColorType SmartColor_getLowBoundary(SmartColor* const me);

ColorType SmartColor_getPrimitive(SmartColor* const me);

SmartColor SmartColor_getValue(SmartColor* const me);

int SmartColor_pCmp(SmartColor* const me, SmartInt s);

void SmartColor_setHighBoundary(SmartColor* const me, ColorType high);

void SmartColor_setLowBoundary(SmartColor* const me, ColorType low);

ErrorCodeType SmartColor_setPrimitive(SmartColor* const me, ColorType p);

ErrorCodeType SmartColor_setValue(SmartColor* const me, SmartColor s);

struct AlarmManager* SmartColor_getItsAlarmManager(const SmartColor* const me);

void SmartColor_setItsAlarmManager(SmartColor* const me,

struct AlarmManager* p_AlarmManager);

SmartColor * SmartColor_Create(ColorType val, ColorType low, ColorType high, struct
AlarmManager* errMgr);

void SmartColor_Destroy(SmartColor* const me);

#endif

Code Listing 6-10: SmartColor.h

#include "SmartColor.h"

#include "AlarmManager.h"

static void cleanUpRelations(SmartColor* const me);

void SmartColor_Init(SmartColor* const me, ColorType val, ColorType low, ColorType high,
struct AlarmManager* errMgr) {

me->errorCode = NO_ERRORS;

me->itsAlarmManager = NULL;

390 Chapter 6

me->lowRange = low;

me->highRange = high;

me->value = val;

me->itsAlarmManager = errMgr;

}

void SmartColor_Cleanup(SmartColor* const me) {
cleanUpRelations(me);

}

ErrorCodeType SmartColor_checkValidity(SmartColor* const me) {
if (me->value < me->lowRange)

return BELOW_RANGE;
else if (me->value > me->highRange)

return ABOVE_RANGE;
else

return NO_ERRORS;
}

int SmartColor_cmp(SmartColor* const me, SmartColor s) {
return memcmp(me, &s, sizeof(s));

}

void SmartColor_errorHandler(SmartColor* const me, ErrorCodeType err) {
AlarmManager_addAlarm(me->itsAlarmManager, err);

}

ErrorCodeType SmartColor_getErrorCode(SmartColor* const me) {
return me->errorCode;

}

ColorType SmartColor_getHighBoundary(SmartColor* const me) {
return me->highRange;

}

ColorType SmartColor_getLowBoundary(SmartColor* const me) {
return me->lowRange;

}

ColorType SmartColor_getPrimitive(SmartColor* const me) {
return me->value;

}

SmartColor SmartColor_getValue(SmartColor* const me) {
return *me;

}

int SmartColor_pCmp(SmartColor* const me, SmartInt s) {
ColorType a = SmartInt_getPrimitive(&s);
return memcmp(&me->value, &a, sizeof(me->value));

}

void SmartColor_setHighBoundary(SmartColor* const me, ColorType high) {
me->highRange = high;

}

Safety and Reliability Patterns 391

void SmartColor_setLowBoundary(SmartColor* const me, ColorType low) {
me->lowRange = low;

}
ErrorCodeType SmartColor_setPrimitive(SmartColor* const me, ColorType p) {
me->errorCode = NO_ERRORS;
if (p < me->lowRange) {

me->errorCode = BELOW_RANGE;

AlarmManager_addAlarm(me->itsAlarmManager, me->errorCode);

}

else if (p > me->highRange) {

me->errorCode = ABOVE_RANGE;

AlarmManager_addAlarm(me->itsAlarmManager, me->errorCode);

}

else

me->value = p;

return me->errorCode;
}

ErrorCodeType SmartColor_setValue(SmartColor* const me, SmartColor s) {
me->errorCode = SmartColor_checkValidity(&s);
if (me->errorCode == NO_ERRORS)

*me = s;
else

SmartColor_errorHandler(me, me->errorCode);
return me->errorCode;

}

struct AlarmManager* SmartColor_getItsAlarmManager(const SmartColor* const me) {
return (struct AlarmManager*)me->itsAlarmManager;

}

void SmartColor_setItsAlarmManager(SmartColor* const me, struct AlarmManager* p_Alarm-
Manager) {
me->itsAlarmManager = p_AlarmManager;

}

SmartColor * SmartColor_Create(ColorType val, ColorType low, ColorType high, struct
AlarmManager* errMgr) {
SmartColor* me = (SmartColor *) malloc(sizeof(SmartColor));
if(me!=NULL)

SmartColor_Init(me, val, low, high, errMgr);
return me;

}

void SmartColor_Destroy(SmartColor* const me) {
if(me!=NULL)

SmartColor_Cleanup(me);
free(me);

}

static void cleanUpRelations(SmartColor* const me) {

392 Chapter 6

if(me->itsAlarmManager != NULL)

me->itsAlarmManager = NULL;

}

Code Listing 6-11: SmartColor.c

Finally, the PatientDataClass uses these types to store values. In this case, it provides the
access functions for the primitive types to its clients but uses smart data types for itself.

#ifndef PatientDataClass_H

#define PatientDataClass_H

#include "SmartDataExample.h"

#include "AlarmManager.h"

#include "SmartColor.h"

#include "SmartInt.h"

typedef struct PatientDataClass PatientDataClass;
struct PatientDataClass {

SmartInt age;

SmartColor backgroundColor;

SmartColor foregroundColor;

SmartInt heartRate;

char name[100];

long patientID;

SmartInt weight;

};

/* Constructors and destructors:*/

void PatientDataClass_Init(PatientDataClass* const me, AlarmManager* errMgr);

void PatientDataClass_Cleanup(PatientDataClass* const me);

/* Operations */

ErrorCodeType PatientDataClass_checkAllData(PatientDataClass* const me);

int PatientDataClass_getAge(PatientDataClass* const me);

ColorType PatientDataClass_getBColor(PatientDataClass* const me);

ColorType PatientDataClass_getFColor(PatientDataClass* const me);

int PatientDataClass_getHeartRate(PatientDataClass* const me);

char* PatientDataClass_getName(PatientDataClass* const me);

int PatientDataClass_getWeight(PatientDataClass* const me);

void PatientDataClass_setAge(PatientDataClass* const me, int a);

void PatientDataClass_setBColor(PatientDataClass* const me, ColorType bc);

void PatientDataClass_setFColor(PatientDataClass* const me, ColorType fc);

void PatientDataClass_setHeartRate(PatientDataClass* const me, int hr);

Safety and Reliability Patterns 393

void PatientDataClass_setName(PatientDataClass* const me, char* n);

void PatientDataClass_setWeight(PatientDataClass* const me, int w);

PatientDataClass * PatientDataClass_Create(AlarmManager* errMgr);

void PatientDataClass_Destroy(PatientDataClass* const me);

#endif

Code Listing 6-12: PatientDataClass.h

#include "PatientDataClass.h"

void PatientDataClass_Init(PatientDataClass* const me,

AlarmManager* errMgr) {

strcpy(me->name, " ");

me->patientID = 0;

/* initialize smart variables */

SmartInt_Init(&me->weight, 0, 0, 500, errMgr);

SmartInt_Init(&me->age, 0, 0, 130, errMgr);

SmartInt_Init(&me->heartRate, 0, 0, 400, errMgr);

SmartColor_Init(&me->foregroundColor, WHITE, BLACK, WHITE, errMgr);

SmartColor_Init(&me->backgroundColor, BLACK, BLACK, WHITE, errMgr);

}

void PatientDataClass_Cleanup(PatientDataClass* const me) {

}

ErrorCodeType PatientDataClass_checkAllData(PatientDataClass* const me) {
ErrorCodeType res;
res = SmartInt_checkValidity(&me->weight);
if (res != NO_ERRORS)

return res;

res = SmartInt_checkValidity(&me->age);

if (res != NO_ERRORS)

return res;

res = SmartInt_checkValidity(&me->heartRate);

if (res != NO_ERRORS)

return res;

res = SmartColor_checkValidity(&me->foregroundColor);

if (res != NO_ERRORS)

return res;

res = SmartColor_checkValidity(&me->backgroundColor);

if (res != NO_ERRORS)

return res;

}

int PatientDataClass_getAge(PatientDataClass* const me) {

return SmartInt_getPrimitive(&me->age);

}

ColorType PatientDataClass_getBColor(PatientDataClass* const me) {

return SmartColor_getPrimitive(&me->backgroundColor);

}

394 Chapter 6

ColorType PatientDataClass_getFColor(PatientDataClass* const me) {

return SmartColor_getPrimitive(&me->foregroundColor);

}

int PatientDataClass_getHeartRate(PatientDataClass* const me) {

return SmartInt_getPrimitive(&me->heartRate);

}

char* PatientDataClass_getName(PatientDataClass* const me) {

return me->name;

}

int PatientDataClass_getWeight(PatientDataClass* const me) {

return SmartInt_getPrimitive(&me->weight);

}

void PatientDataClass_setAge(PatientDataClass* const me, int a) {

SmartInt_setPrimitive(&me->age, a);

}

void PatientDataClass_setBColor(PatientDataClass* const me, ColorType bc) {
SmartColor_setPrimitive(&me->backgroundColor, bc);

}

void PatientDataClass_setFColor(PatientDataClass* const me, ColorType fc) {
SmartColor_setPrimitive(&me->foregroundColor, fc);

}

void PatientDataClass_setHeartRate(PatientDataClass* const me, int hr) {
SmartInt_setPrimitive(&me->heartRate, hr);

}

void PatientDataClass_setName(PatientDataClass* const me, char* n) {

strcpy(me->name, n);

}

void PatientDataClass_setWeight(PatientDataClass* const me, int w) {

SmartInt_setPrimitive(&me->weight, w);

}

PatientDataClass * PatientDataClass_Create(AlarmManager* errMgr) {

PatientDataClass* me = (PatientDataClass *)

malloc(sizeof(PatientDataClass));

if(me!=NULL)

PatientDataClass_Init(me, errMgr);

return me;

}
void PatientDataClass_Destroy(PatientDataClass* const me) {
if(me!=NULL)

PatientDataClass_Cleanup(me);

free(me);

}

Code Listing 6-13: PatientDataClass.c

Safety and Reliability Patterns 395

6.5 Channel Pattern
The Channel Pattern is a larger-scale pattern than the previous patterns we’ve discussed. The
Channel Pattern is used to support medium- to large-scale redundancy to help identify when
run-time faults occur and possibly (depending on how it’s used) continue to provide services in
the presence of such a fault.

6.5.1 Abstract

A channel is an architectural structure that contains software (and possibly hardware as well)
that performs end-to-end processing; that is, it processes data from raw acquisition, through a
series of data processing steps, to physical actuation in the real world. The advantage of a
channel is that it provides an independent, self-contained unit of functionality that can be
replicated in different ways to address different safety and reliability concerns.

6.5.2 Problem

This pattern provides a basic element of large-scale redundancy that can be used in different
ways to address safety and reliability concerns.

6.5.3 Pattern Structure

The basic structure of the pattern is shown in Figure 6-8. The generalization shown in the figure
can be notional only for implementations without true inheritance in C. The basic idea is that
the software objects are arranged through a series of links so that data are acquired and
processed through a series of data transformational steps until it results in an output that
controls one or more actuators. The data types may change (for example, it may be acquired as
a double but result in an int output to the actuator) or they may remain the same throughout
the processing.

6.5.4 Collaboration Roles

This section describes the roles for this pattern.

6.5.4.1 AbstractDataTransform
This class is a placeholder for one of several possible ConcreteDataTransforms. In an
object-oriented language or implementation, true generalization can be used but in C, it is more
common to use this as a notional concept to give the intent rather than drive the implementa
tion. It has two optional7 associations. One is to itself – that is, the next transformation in the
list. The other is to the output ActuationDeviceDriver – this is in lieu of the former

7 Common implementation is a pointer, set to NULL if the link isn’t active.

396 Chapter 6

Figure 6-8: Channel Pattern

association. Put another way, the AbstractDataTransform has a link to the next processing
step in the chain or to the output device driver, but not both.

6.5.4.2 ActuatorDeviceDriver
This class uses the computed output values to drive one or more actuators, such as a motor,
light, or heating unit.

6.5.4.3 ConcreteDataTransform
This class performs a mathematical transformation on the incoming data value (from either the
sensor or a previous ConcreteDataTransform) and produces an output (sent to the next
ConcreteDataTransform in the sequence or the ActuatorDeviceDriver). In simple
cases, there may be only a single ConcreteDataTransform class, but in more complex
situations there may be dozens.

6.5.4.4 SensorDeviceDriver
This class acquires physical data from one or more sensors to put into the channel for
processing.

6.5.5 Consequences

The channel in this simple form provides only a little value. Its true value lies in the use of
multiple instances of the channel. There are a number of different ways to combine the
channels, as well as the data transformations, to address safety and reliability concerns.

In general, the benefits are providing a clear means for identifying faults and, depending on
the pattern, providing redundant channels to continue to provide services or to go to a

Safety and Reliability Patterns 397

“fault-safe state.” The drawbacks of using the pattern are the extra memory (both code and
data), processing time, and hardware required, depending on the specific usage of the
channel.

6.5.6 Implementation Strategies

As mentioned, the pattern may be implemented with true generalization but it is more
common in C to think of the AbstractDataTransformation as a placeholder for some
particular ConcreteDataTransform class; the links are from different types of
ConcereteDataTransform classes that each perform some special step in the overall data
transformation function.

Data are passed through using one of two primary strategies. The simplest is to acquire a datum
and pass it through the series of transformations and out to the actuator before acquiring the
next. In higher bandwidth applications multiple instances of the data may be present in the
channel at the same time, one data instance per transform, with data passed from one transform
to the next at the same time as all the other data instances.

6.5.7 Related Patterns

This pattern provides medium- to large-scale redundancy. It is the basis for many other patterns
including the Protected Single-Channel Pattern and Homogeneous Redundancy Pattern dis
cussed later in this chapter. Other patterns include Triple Modular Redundancy (TMR) Pattern,
in which three channels run in parallel and vote on the outcome, and the Sanity Check Pattern
in which a primary channel is checked for reasonableness by a lighter-weight secondary
channel. A number of such patterns are discussed in my Real-Time Design Patterns: Robust
Scalable Architecture for Real-Time Systems (Addison-Wesley, 2002).

6.5.8 Example

I will provide a relatively simple example here of the use of the pattern. The classes shown in
Figure 6-9 implement a simple electromyography biofeedback device. It works by measuring
the voltage across two electrodes placed on the skin over a muscle. As the muscle tension
changes, the voltage potential between the electrodes changes. This is gathered (as an int) by
the EMGSensorDeviceDriver. Then it is converted into a frequency by the first data
transformation class; this is done by taking a set of samples and computing the fundamental
frequency of those data. This results in a computed frequency that is then filtered with a moving
average filter; this is a filter that smoothes out rapid frequency changes by averaging the change
over several (frequency) data samples measured sequentially in time. Lastly, the filtered
frequency is converted into a pleasing color (specified via RGB values) and this color is sent to
the light device driver.

398 Chapter 6

Figure 6-9: Channel Pattern example

Figure 6-10 shows the same pattern but with the channel objects as a part of a larger assembly8

in which the elements of the channel are parts. The boxes inside the EMG Channel are part
objects, and this is indicated with an underlined name.

The code is very straightforward for the pattern. For initialization, the key is that the EMG
channel instantiates the objects and then initializes the links (see the initRelations()

function in Code Listing 6-15) between them. For operation, the EMG Channel provides the
services of the start of the chain (that is, the EMG Device Driver); when acquireData() is
called on the EMG Channel, it calls EMGSensorDeviceDriver_acquireData() which
gets the data and passes them on to the ConvertToFrequency_computeFreq() function.
This function does the conversion and then calls the MovingAverageFilter_filter()

function which smooths out high frequency artifacts and then passes the output of that onto
CalculateColor_freqToColor(). This function computes the RGB values associated
with the frequency and calls LightDeviceDriver_setLightColor() to turn the light to
the correct color. In this case, the processing is all synchronous. It is possible to pass the data
among the ConcreteDataTransformations asynchronously as well, by putting queues
between them and having them pend on data input to those queues.

The next two code listings, Code Listing 6-14 and Code Listing 6-15 give the code for the
EMGChannel class header and implementation, respectively.

8 In UML, such an assembly is known as a structured class.

Safety and Reliability Patterns 399

Figure 6-10: Channel Pattern (object view)

#ifndef EMGChannel_H
#define EMGChannel_H

#include "CalculateColor.h"
#include "ConvertToFrequency.h"
#include "EMGSensorDeviceDriver.h"
#include "LightDeviceDriver.h"
#include "movingAverageFilter.h"

typedef struct EMGChannel EMGChannel;
struct EMGChannel {
struct CalculateColor itsCalculateColor;
struct ConvertToFrequency itsConvertToFrequency;
struct EMGSensorDeviceDriver itsEMGSensorDeviceDriver;
struct LightDeviceDriver itsLightDeviceDriver;
struct movingAverageFilter itsMovingAverageFilter;

};

/* Constructors and destructors:*/

void EMGChannel_Init(EMGChannel* const me);

void EMGChannel_Cleanup(EMGChannel* const me);

/* Operations */

void EMGChannel_acquireData(EMGChannel* const me);

double EMGChannel_getFrequency(EMGChannel* const me);

long EMGChannel_getLightColor(EMGChannel* const me);

int EMGChannel_getVoltage(EMGChannel* const me);

void EMGChannel_setSensitivity(EMGChannel* const me, int sen);

400 Chapter 6

struct CalculateColor* EMGChannel_getItsCalculateColor(const EMGChannel* const me);

struct ConvertToFrequency* EMGChannel_getItsConvertToFrequency(const

EMGChannel* const me);

struct EMGSensorDeviceDriver* EMGChannel_getItsEMGSensorDeviceDriver(const

EMGChannel* const me);

struct LightDeviceDriver* EMGChannel_getItsLightDeviceDriver(const

EMGChannel* const me);

struct movingAverageFilter* EMGChannel_getItsMovingAverageFilter(const

EMGChannel* const me);

EMGChannel * EMGChannel_Create(void);

void EMGChannel_Destroy(EMGChannel* const me);

#endif

Code Listing 6-14: EMGChannel.h

#include "EMGChannel.h"

static void initRelations(EMGChannel* const me);

static void cleanUpRelations(EMGChannel* const me);

void EMGChannel_Init(EMGChannel* const me) {

initRelations(me);

}

void EMGChannel_Cleanup(EMGChannel* const me) {

cleanUpRelations(me);

}

void EMGChannel_acquireData(EMGChannel* const me) {

/* delegate to the appropriate part */

EMGSensorDeviceDriver_acquireData(&me->itsEMGSensorDeviceDriver);

}

double EMGChannel_getFrequency(EMGChannel* const me) {

return me->itsMovingAverageFilter.computedFreq;

}

long EMGChannel_getLightColor(EMGChannel* const me) {
return me->itsCalculateColor.red<<16 + me->itsCalculateColor.green<<8 + me->its

CalculateColor.blue;
}

Safety and Reliability Patterns 401

int EMGChannel_getVoltage(EMGChannel* const me) {
return me->itsEMGSensorDeviceDriver.voltage;

}

void EMGChannel_setSensitivity(EMGChannel* const me, int sen) {
EMGSensorDeviceDriver_setSensitivity(&me->itsEMGSensorDeviceDriver, sen);

}

struct CalculateColor* EMGChannel_getItsCalculateColor(const EMGChannel* const me) {
return (struct CalculateColor*)&(me->itsCalculateColor);

}

struct ConvertToFrequency* EMGChannel_getItsConvertToFrequency(const EMGChannel*
const me) {
return (struct ConvertToFrequency*)&(me->itsConvertToFrequency);

}

struct EMGSensorDeviceDriver* EMGChannel_getItsEMGSensorDeviceDriver(const EMGChan
nel* const me) {
return (struct EMGSensorDeviceDriver*)&(me->itsEMGSensorDeviceDriver);

}

struct LightDeviceDriver* EMGChannel_getItsLightDeviceDriver(const EMGChannel* const
me) {
return (struct LightDeviceDriver*)&(me->itsLightDeviceDriver);

}

struct movingAverageFilter*
EMGChannel_getItsMovingAverageFilter(const EMGChannel* const me) {
return (struct movingAverageFilter*)&(me->itsMovingAverageFilter);

}

EMGChannel * EMGChannel_Create(void) {
EMGChannel* me = (EMGChannel *) malloc(sizeof(EMGChannel));
if(me!=NULL)

EMGChannel_Init(me);
return me;

}

void EMGChannel_Destroy(EMGChannel* const me) {
if(me!=NULL)

EMGChannel_Cleanup(me);
free(me);

}

static void initRelations(EMGChannel* const me) {
CalculateColor_Init(&(me->itsCalculateColor));
ConvertToFrequency_Init(&(me->itsConvertToFrequency));
EMGSensorDeviceDriver_Init(&(me->itsEMGSensorDeviceDriver));

402 Chapter 6

LightDeviceDriver_Init(&(me->itsLightDeviceDriver));

movingAverageFilter_Init(&(me->itsMovingAverageFilter));

EMGSensorDeviceDriver_setItsConvertToFrequency(&(me

>itsEMGSensorDeviceDriver),&(me->itsConvertToFrequency));
ConvertToFrequency_setItsMovingAverageFilter(&(me->itsConvertToFrequency),&(me

>itsMovingAverageFilter));
movingAverageFilter_setItsCalculateColor(&(me->itsMovingAverageFilter),&(me

>itsCalculateColor));
CalculateColor_setItsLightDeviceDriver(&(me->itsCalculateColor),&(me

>itsLightDeviceDriver));

}

static void cleanUpRelations(EMGChannel* const me) {

movingAverageFilter_Cleanup(&(me->itsMovingAverageFilter));

LightDeviceDriver_Cleanup(&(me->itsLightDeviceDriver));

EMGSensorDeviceDriver_Cleanup(&(me

>itsEMGSensorDeviceDriver));

ConvertToFrequency_Cleanup(&(me->itsConvertToFrequency));

CalculateColor_Cleanup(&(me->itsCalculateColor));

}

Code Listing 6-15: EMGChannel.c

6.6 Protected Single Channel Pattern
The Protected Single Channel Pattern is a simple elaboration of the Channel pattern in which
data checks are added at one or more ConcreteDataTransformations. It provides light
weight redundancy but typically cannot continue to provide service if a fault is discovered.

6.6.1 Abstract

The Protected Single Channel Pattern uses a single channel to handle the processing of sensory
data up to and including actuation based on that data. Safety and reliability are enhanced through
the addition of checks at key points in the channel, which may require some additional hardware.
Because there is only a single channel, this pattern will not be able to continue to function in the
presence of persistent faults, but it detects and may be able to handle transient faults.

6.6.2 Problem

Redundancy is expensive, not only in terms of development effort but also in terms of replicated
hardware. In some cases, fully redundant channels may not be necessary. For example, if there is a
fault-safe state (a state known to always be safe), the system must only be able to detect a fault and
enter that state. This lowers the reliability of the system, but it may still meet the user needs.

Safety and Reliability Patterns 403

6.6.3 Pattern Structure

The pattern, shown in Figure 6-11, is a simple elaboration of the Channel Pattern (see
Figure 6-8). All we’ve added here are some checks on some of the transformation steps. In fact,
these checks need not be implemented in separate classes, but can be implemented internal to
the ConcreteTransformations themselves. These checks can be any kind of checks, such
as:

•	 Range checking (are data in the required range?)
•	 Reasonableness checks (are data in the expected range for the given situation?)
•	 Consistency checks (is the value consistent with other data being computed at the same time?)
•	 Backwards transformational checks (can we recompute the input values from the output

values?)
•	 Data validity checks, such as we’ve seen before with the One’s Complement and CRC

Patterns

and so on.

Figure 6-11: Protected Single Channel Pattern

404 Chapter 6

6.6.4 Collaboration Roles

This section describes the roles for this pattern.

6.6.4.1 AbstractDataTransform
This class is a placeholder for one of several possible ConcreteDataTransforms. In an
object-oriented language or implementation, true generalization can be used but in C, it is more
common to use this as a notional concept to give the intent rather than drive the implementa
tion. It has two optional9 associations. One is to itself – that is, the next transformation in the
list. The other is to the output ActuationDeviceDriver – this is in lieu of the former
association. Put another way, the AbstractDataTransform has a link to the next processing
step in the chain or to the output device driver, but not both.

This class has also an optional link to AbstractTransformChecker for points in the
transformation chain where checking is appropriate.

6.6.4.2 AbstractTransformChecker
This is a placeholder for an element that can check on the validity of the processing or data in
their current state.

6.6.4.3 ActuatorDeviceDriver
This class uses the computed output values to drive one or more actuators, such as a motor,
light, or heating unit.

6.6.4.4 ConcreteDataTransform
This class performs a mathematical transformation on the incoming data value (from either the
sensor or a previous ConcreteDataTransform) and produces an output (sent to the next
ConcreteDataTransform in the sequence or the ActuatorDeviceDriver). In simple
cases, there may be only a single ConcreteDataTransform class, but in more complex
situations there may be dozens.

Certain of these classes form checkpoints – points in the transformation chain at which the
validality of the transformations will be checked. For those cases, the optional link to the
specific ConcreteTransformChecker will be implemented.

6.6.4.5 ConcreteTransformChecker
This is a specific transformation checking class that checks the transformation at a single point
in the chain.

6.6.4.6 SensorDeviceDriver
This class acquires physical data from one or more sensors to put into the channel for
processing.

9 Common implementation is a pointer, set to NULL if the link isn’t active.

Safety and Reliability Patterns 405

6.6.5 Implementation Strategies

In general, the benefits are providing a clear means for identifying faults and, depending on
the pattern, providing redundant channels to continue to provide services or to go to a
“fault-safe state.” The drawbacks of using the pattern are the extra memory (both code and
data), processing time, and hardware required, depending on the specific usage of the
channel.

As mentioned, the pattern may be implemented with true generalization, but it is more
common in C to think of the AbstractDataTransformation as a placeholder for some
particular ConcreteDataTransform class; the links are from different subtypes of
ConcereteDataTransform classes that each perform some special step in the overall data
transformation function.

Data are passed through using one of two primary strategies. The simplest is to acquire a datum
and pass it through the series of transformations and out to the actuator before acquiring the
next. In higher bandwidth applications multiple instances of the data may be present in the
channel at the same time, one data instance per transform, with the data passed from one
transform to the next at the same time as all the other data instances.

In addition, the data checks may be put “in place” in some of the transformation steps rather
than implement them as a separate class. That is, in fact, the specialization of this pattern from
the more generic Channel Pattern.

6.6.6 Related Patterns

This pattern provides medium- to large-scale redundancy. It is one of many patterns based on
the Channel Pattern discussed earlier in this chapter. A number of such patterns are discussed in
my Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems (Addison-
Wesley, 2002).

The transformation checks can themselves be based on patterns such as the One’s Complement
and CRC Patterns discussed earlier.

6.6.7 Example

In Figure 6-12, I purposely chose a situation that demanded a bit more creative application of
the pattern. This is a heating system with sensor sets for multiple rooms, each having sensors
for fan speed, temperature, and thermostat settings. Because the example isn’t laid out exactly
as the pattern, I indicated which pattern role each class plays by adding a stereotype10 to each.

10	 A stereotype is “a special kind of” marking that appears inside «» marks. In this case, the stereotypes are the
names of the pattern roles.

406 Chapter 6

Figure 6-12: Protected Single Channel example

I further modified the pattern by making the first ConcreteDataTransform pull the data
from its SensorDeviceDrivers (the thermometer and room fan) associated with each room.
The next transform, ComputeRequiredHeatFlow, not only gets the actual heat flow
from the previous transform but reads each room’s thermostat to get the desired temperature
and computes the desired output heat flow from the furnace. The difference between
actual and desired temperatures results in a desired heat flow. This is passed on to the
CalculateFurnaceParams, which computes the necessary furnace gas flow, furnace blower
speeds, and commands the FurnaceController.

In terms of safety, there are several checks in this protected single channel. The Thermo
meters are checked for actual temperature, and if the temperature is out of bounds, this leads
to either emergency restart of the furnace (if below 0º F) or shutting the furnace down (if over
130º F)11. The actual heat flow and (computed) desired heat flow are checked to ensure that
they don’t exceed 14,000 BTUs. If this limit is exceeded, the furnace is shut down.

11 That’s -18º C and 54º C for you metric-speaking types.

Safety and Reliability Patterns 407

In addition, both the Thermometer and Thermostat use the One’s Complement Pattern
(described earlier in this chapter) to detect memory corruption. In the case of the
Thermometer, the behavior on corruption is to shut the furnace down, while in the case of
the Thermostat, the behavior is to use the default temperature setting of 70º F. If the default
is corrupted, then it calls FurnaceController_shutDown().

I don’t want to give all the code here, but we can look at a few relevant classes. The
Thermostat class implements a One’s Complement Pattern to ensure its data isn’t corrupted.
Its code is shown in Code Listing 6-16 and Code Listing 6-17.

#ifndef Thermostat_H

#define Thermostat_H

struct FurnaceController;

typedef struct Thermostat Thermostat;
struct Thermostat {

int defaultTempSetting;

int desiredTemp;

int invertedDefaultTemp;

int invertedDesiredTemp;

struct FurnaceController* itsFurnaceController;

};

/* Constructors and destructors:*/

void Thermostat_Init(Thermostat* const me);

void Thermostat_Cleanup(Thermostat* const me);

/* Operations */

int Thermostat_getDesiredTemperature(Thermostat* const me);

void Thermostat_setDesiredTemperature(Thermostat* const me, int temp);

struct FurnaceController* Thermostat_getItsFurnaceController(const

Thermostat* const me);

void Thermostat_setItsFurnaceController(Thermostat* const me,

struct FurnaceController* p_FurnaceController);

Thermostat * Thermostat_Create(void);

void Thermostat_Destroy(Thermostat* const me);

#endif

Code Listing 6-16: Thermostat.h

408 Chapter 6

#include "Thermostat.h"

#include "FurnaceController.h"

static void cleanUpRelations(Thermostat* const me);

void Thermostat_Init(Thermostat* const me) {
me->defaultTempSetting = 70;
me->invertedDefaultTemp = ~70;
me->itsFurnaceController = NULL;

}

void Thermostat_Cleanup(Thermostat* const me) {
cleanUpRelations(me);

}

int Thermostat_getDesiredTemperature(Thermostat* const me) {
if (me->desiredTemp == ~me->invertedDesiredTemp)

return me->desiredTemp;
else

if (me->defaultTempSetting == ~me->invertedDefaultTemp) {

Thermostat_setDesiredTemperature(me, me->defaultTempSetting);

return me->defaultTempSetting;

}

else {

FurnaceController_shutDown(me->itsFurnaceController);

return me->defaultTempSetting;

};

}

void Thermostat_setDesiredTemperature(Thermostat* const me, int temp) {
if (me->desiredTemp == ~me->invertedDesiredTemp) {

me->desiredTemp = temp;

me->invertedDesiredTemp = ~temp;

if (me->desiredTemp == ~me->invertedDesiredTemp)

return;
}

else
FurnaceController_shutDown(me->itsFurnaceController);

}

struct FurnaceController* Thermostat_getItsFurnaceController(const
Thermostat* const me) {
return (struct FurnaceController*)me->itsFurnaceController;

}

void Thermostat_setItsFurnaceController(Thermostat* const me, struct FurnaceControl
ler* p_FurnaceController) {
me->itsFurnaceController = p_FurnaceController;

}

Safety and Reliability Patterns 409

Thermostat * Thermostat_Create(void) {

Thermostat* me = (Thermostat *) malloc(sizeof(Thermostat));

if(me!=NULL)

Thermostat_Init(me);

return me;

}

void Thermostat_Destroy(Thermostat* const me) {

if(me!=NULL)

Thermostat_Cleanup(me);

free(me);

}

static void cleanUpRelations(Thermostat* const me) {

if(me->itsFurnaceController != NULL)

me->itsFurnaceController = NULL;

}

Code Listing 6-17: Thermostat.c

The CheckTemperature class provides a reasonableness check on the temperature. Code
Listing 6-18 and Code Listing 6-19 give the header and implementation.

#ifndef CheckTemperature_H

#define CheckTemperature_H

struct FurnaceController;

typedef struct CheckTemperature CheckTemperature;
struct CheckTemperature {

int maximumTemp;

int minimumTemp;

struct FurnaceController* itsFurnaceController;

};

void CheckTemperature_Init(CheckTemperature* const me);

void CheckTemperature_Cleanup(CheckTemperature* const me);

void CheckTemperature_checkTemperature(CheckTemperature* const me, int temp);

struct FurnaceController*

CheckTemperature_getItsFurnaceController(const CheckTemperature* const me);

void CheckTemperature_setItsFurnaceController(CheckTemperature* const

me, struct FurnaceController* p_FurnaceController);

CheckTemperature * CheckTemperature_Create(void);

410 Chapter 6

void CheckTemperature_Destroy(CheckTemperature* const me);

#endif

Code Listing 6-18: CheckTemperature.h

#include "CheckTemperature.h"

#include "FurnaceController.h"

static void cleanUpRelations(CheckTemperature* const me);

void CheckTemperature_Init(CheckTemperature* const me) {

me->maximumTemp = 130;

me->minimumTemp = 0;

me->itsFurnaceController = NULL;

}

void CheckTemperature_Cleanup(CheckTemperature* const me) {

cleanUpRelations(me);

}

void CheckTemperature_checkTemperature(CheckTemperature* const me, int temp) {
if (temp < me->minimumTemp)

FurnaceController_emergencyRestart(me

>itsFurnaceController);
if (temp > me->maximumTemp)

FurnaceController_shutDown(me->itsFurnaceController);
}

struct FurnaceController*
CheckTemperature_getItsFurnaceController(const CheckTemperature* const me) {
return (struct FurnaceController*)me->itsFurnaceController;

}

void CheckTemperature_setItsFurnaceController(CheckTemperature*

const me, struct FurnaceController* p_FurnaceController) {

me->itsFurnaceController = p_FurnaceController;

}

CheckTemperature * CheckTemperature_Create(void) {

CheckTemperature* me = (CheckTemperature *)

malloc(sizeof(CheckTemperature));

if(me!=NULL)

CheckTemperature_Init(me);

return me;

}

void CheckTemperature_Destroy(CheckTemperature* const me) {

if(me!=NULL)

CheckTemperature_Cleanup(me);

free(me);

}

Safety and Reliability Patterns 411

static void cleanUpRelations(CheckTemperature* const me) {

if(me->itsFurnaceController != NULL)

me->itsFurnaceController = NULL;

}

Code Listing 6-19: CheckTemperature.c

The CheckTemperature class is used by the Thermometer. The last code listings, Code
Listing 6-20 and Code Listing 6-21, give the header and implementation for this class.

#ifndef Thermometer_H

#define Thermometer_H

struct CheckTemperature;

struct FurnaceController;

typedef struct Thermometer Thermometer;
struct Thermometer {

int invertedMeasuredTemp;

int measuredTemp;

struct CheckTemperature* itsCheckTemperature;

struct FurnaceController* itsFurnaceController;

};

/* Constructors and destructors:*/

void Thermometer_Init(Thermometer* const me);

void Thermometer_Cleanup(Thermometer* const me);

/* Operations */

void Thermometer_acquireMeasuredTemperature(Thermometer* const me);

int Thermometer_getMeasuredTemperature(Thermometer* const me);

struct CheckTemperature* Thermometer_getItsCheckTemperature(const

Thermometer* const me);

void Thermometer_setItsCheckTemperature(Thermometer* const me,

struct CheckTemperature* p_CheckTemperature);

struct FurnaceController* Thermometer_getItsFurnaceController(const

Thermometer* const me);

void Thermometer_setItsFurnaceController(Thermometer* const me,

struct FurnaceController* p_FurnaceController);

412 Chapter 6

Thermometer * Thermometer_Create(void);

void Thermometer_Destroy(Thermometer* const me);

struct CheckTemperature*
Thermometer_getItsCheckTemperature_1(const Thermometer* const me);

void Thermometer_setItsCheckTemperature_1(Thermometer* const me,
struct CheckTemperature* p_CheckTemperature);

#endif

Code Listing 6-20: Thermometer.h

#include "Thermometer.h"

#include "CheckTemperature.h"

#include "FurnaceController.h"

static void cleanUpRelations(Thermometer* const me);

void Thermometer_Init(Thermometer* const me) {

me->itsCheckTemperature = NULL;

me->itsFurnaceController = NULL;

}

void Thermometer_Cleanup(Thermometer* const me) {

cleanUpRelations(me);

}

void Thermometer_acquireMeasuredTemperature(Thermometer* const me) {
/* access the hardware here */

}

int Thermometer_getMeasuredTemperature(Thermometer* const me) {
if (me->measuredTemp == ~me->invertedMeasuredTemp) {

CheckTemperature_checkTemperature(me->itsCheckTemperature,
me->measuredTemp);

return me->measuredTemp;

}

else {
FurnaceController_shutDown(me->itsFurnaceController);
return 0;
}

}

struct CheckTemperature* Thermometer_getItsCheckTemperature(const
Thermometer* const me) {
return (struct CheckTemperature*)me->itsCheckTemperature;

}
void Thermometer_setItsCheckTemperature(Thermometer* const me,
struct CheckTemperature* p_CheckTemperature) {
me->itsCheckTemperature = p_CheckTemperature;

}

Safety and Reliability Patterns 413

struct FurnaceController* Thermometer_getItsFurnaceController(const

Thermometer* const me) {

return (struct FurnaceController*)me->itsFurnaceController;

}

void Thermometer_setItsFurnaceController(Thermometer* const me,

struct FurnaceController* p_FurnaceController) {

me->itsFurnaceController = p_FurnaceController;

}

Thermometer * Thermometer_Create(void) {

Thermometer* me = (Thermometer *)

malloc(sizeof(Thermometer));

if(me!=NULL)

Thermometer_Init(me);

return me;

}

void Thermometer_Destroy(Thermometer* const me) {

if(me!=NULL)

Thermometer_Cleanup(me);

free(me);

}

static void cleanUpRelations(Thermometer* const me) {

if(me->itsCheckTemperature != NULL)

me->itsCheckTemperature = NULL;

if(me->itsFurnaceController != NULL)

me->itsFurnaceController = NULL;

}

Code Listing 6-21: Thermometer.c

6.7 Dual Channel Pattern
The Dual Channel Pattern is primarily a pattern to improve reliability by offering multiple
channels, thereby addressing redundancy concerns at the architectural level. If the channels are
identical (called the Homogeneous Redundancy Channel), the pattern can address random
faults (failures) but not systematic faults (errors). If the channels use a different design or
implementation, the pattern is called the Heterogeneous Redundancy Pattern (also known as
Diverse Design Pattern) and can address both random and systematic faults.

6.7.1 Abstract

The Dual Channel Pattern provides architectural redundancy to address safety and reliability
concerns. It does this by replicating channels and embedding logic that manages them and
determines when the channels will be “active.”

414 Chapter 6

6.7.2 Problem

This pattern provides protection against single-point faults (either failures or both failures and
errors, depending on the specific subpattern selected). Depending on which pattern, the system
may detect a fault in one channel by comparing it to the other and then transition to the fault-
safe state OR it may use other means to detect the fault in one channel and switch to the other
when a fault occurs.

6.7.3 Pattern Structure

Figure 6-13 shows the basic structure for the pattern.

Figure 6-14 shows the detailed internal structure within the pattern. It is almost exactly
what appears in the Protected Single Channel Pattern, with the exception of the association
from the ConcreteTransformChecker to the current and alternative channel.
Note that the itsChannel association points to the current channel that owns the
ConcreteTransformChecker instance while the itsOtherChannel points to the alter
native channel. This allows the checker to disable the current channel and enable the alternative
channel.

6.7.4 Collaboration Roles

This section describes the roles for this pattern. Note that the roles that are internal to the pattern
can be seen in the previous section on the Protected Single Channel Pattern.

6.7.4.1 AbstractDataTransform
This class is a placeholder for one of several possible ConcreteDataTransforms. In an
object-oriented language or implementation, true generalization can be used but in C, it is more
common to use this as a notional concept to give the intent rather than drive the implementa
tion. It has two optional12 associations. One is to itself – that is, the next transformation in the
list. The other is to the output ActuationDeviceDriver – this is in lieu of the former
association. Put another way, the AbstractDataTransform has a link to the next processing
step in the chain or to the output device driver, but not both.

This class also an optional link to AbstractTransformChecker for points in the transfor
mation chain where checking is appropriate.

6.7.4.2 AbstractTransformChecker
This is a placeholder for an element that can check on the validity of the processing or data in
its current state.

12 Common implementation is a pointer, set to NULL if the link isn’t active.

Safety and Reliability Patterns 415

Figure 6-13: Dual Channel Pattern

6.7.4.3 ActuatorDeviceDriver
This class uses the computed output values to drive one or more actuator, such as a motor, light,
or heating unit.

416 Chapter 6

Figure 6-14: Dual Channel Pattern detailed class view

6.7.4.4 Channel
This class is the container for the instances of the others. It is important in this context because it
provides a “unit of redundancy.” It provides two services of itself – enable() and disable().

6.7.4.5 ConcreteDataTransform
This class performs a mathematical transformation on the incoming data value (from either the
sensor or a previous ConcreteDataTransform) and produces an output (sent to the next
ConcreteDataTransform in the sequence or the ActuatorDeviceDriver). In simple
cases, there may be only a single ConcreteDataTransform class, but in more complex
situations there may be dozens.

Certain of these classes form checkpoints – points in the transformation chain at which the
validality of the transformations will be checked. For those cases, the optional link to the
specific ConcreteTransformChecker will be implemented.

Safety and Reliability Patterns 417

6.7.4.6 ConcreteTransformChecker
This is a specific transformation checking class that checks the transformation at a single point
in the chain.

6.7.4.7 SensorDeviceDriver
This class acquires physical data from one or more sensors to put into the channel for
processing.

6.7.5 Consequences

This pattern addresses safety- or reliability-related faults by replicating the channel; this usually
requires replication of some amount of hardware as well, giving it a rather high recurring
(production) cost. If the channels are identical, then all replicants contain the same errors and so
will manifest the error under the same circumstances.

6.7.6 Implementation Strategies

The large-scale implementation strategies are commonly identified as different subpatterns
of this one. These are discussed in the next section. In addition, the management of the
two channels can be implemented differently. Both channels can be run simultaneously and
checked against each other – if the outputs differ above some threshold, the system
transitions to a fault-safe state. Alternatively, one channel can run until a fault is detected and
then the other channel can be enabled, allowing continuation of services in the presence of
the fault.

6.7.7 Related Patterns

There are a number of variants on this pattern. Each gives a different cost/benefit ratio.

6.7.7.1 Homogeneous Redundancy Pattern

Description
This pattern variant uses identical designs and implementations for the different channels. It
can effectively address single-point faults – provided that the faults are isolated within a
single channel. The system can continue functionality in the presence of a failure within a
channel.

Consequences
This pattern variant has a relatively high recurring cost (cost per shipped item) but a relatively
low design cost (since each channel must only be designed once). Typically sensors and
actuators are replicated to provide fault isolation, and often processors, memory, and other
hardware must be replicated.

418 Chapter 6

6.7.7.2 Heterogeneous Redundancy Pattern

Description
This pattern variant uses dual channels of different designs or different implementations to
address both random and systematic faults. The system can continue to deliver services in the
presence of a fault, provided that the fault is properly isolated within a single channel.
Typically, sensors and actuators are replicated to provide fault isolation, and often processors,
memory, and other hardware must be replicated as well as providing multiple (different)
implementations of the same software functionality.

Consequences
This pattern variant has a relatively high recurring cost (cost per shipped item) and a relatively
high design cost (since each channel must be designed twice). Typically, sensors and actuators
are replicated to provide fault isolation, and often processors, memory, and other hardware must
be replicated in addition to the software functionality. Note that this pattern variant addresses
both random and systematic faults, although Nancy Leveson notes that there is usually some
correlation between errors even in diverse implementations13.

6.7.7.3 Triple Modular Redundancy (TMR) Pattern

Description
This pattern variant uses three channels of usually identical designs to address both faults. The
theory of use is that if there is a single-point fault then one of the channels will disagree with the
other two and the outlier is discarded. The voting mechanism (the ChannelArbiter) is
designed to “fail on” so that at least one channel (it doesn’t matter which) will result in an
output if the voting mechanism fails. The system can continue to deliver services in the
presence of a fault, provided that the fault is properly isolated within a single channel.
Typically, sensors and actuators are replicated to provide fault isolation, and often processors,
memory, and other hardware must be replicated as well as providing multiple (different)
implementations of the same software functionality.

Consequences
This pattern has a very high recurring cost because the channel must be replicated
three times. If all the channels have the same design (most common), then the design
cost is relatively low; the only additional cost is the ChannelArbiter used to reject the
outlier output. If the channels are of different designs, then the cost of this pattern variant is
very high since each channel must be designed three times. This is a very common pattern in
avionics.

13 See Leveson, N., 1995. Safeware: System Safety and Computers. Addison-Wesley.

Safety and Reliability Patterns 419

Figure 6-15: Triple Modular Redundancy Pattern

6.7.7.4 Sanity-Check Pattern

Description
This pattern variant uses two heterogeneous channels; one is the primary actuation channel and
the second is a lightweight channel that checks on the output using lower fidelity computations
and hardware. If the primary channel has a fault that can be detected by the lower fidelity
checking channel, then the system enters its fault-safe state.

Consequences
This pattern has a low recurring cost and a medium design cost since it requires additional
design work but lower fidelity redundancy. It cannot continue in the presence of a single fault.

Figure 6-16: Sanity Check Pattern

420 Chapter 6

6.7.7.5 Monitor-Actuator Pattern

Description
This pattern variant uses two extremely heterogeneous channels. The first, just as in the Sanity
Check Pattern, is the actuator channel. This channel provides the system service. The second
channel monitors the physical result of the actuation channel using one or more independent
sensors. The concept of the pattern is that if the actuator channel has a fault and performs
incorrectly, the monitoring channel identifies it and can command the system to a fault-safe
state. If the monitoring channel has a fault, then the actuation channel is still behaving correctly.
This pattern assumes there is a fault-safe state and that the sensor(s) used by the monitoring
channel are not used by the actuation channel.

The primary differences between the Monitor-Actuator Pattern and the Sanity Check
Pattern are:

1.	 The Sanity Check Pattern is a low-fidelity check on the output of the computation of the
actuation channel; this does not require an independent sensor.

2.	 The Monitor-Actuator is a high-fidelity check on the physical result of the actuator channel
and therefore requires an independent sensor.

Consequences

This is a medium-weight pattern. It requires some additional recurring cost because of the
additional sensor(s) and processing capability for the monitoring channel. The extra monitoring
channel requires a modest amount of additional design work as well. As mentioned, this
channel provides single-point fault safety for systems in which there is a fault-safe state.

Figure 6-17: Monitor-Actuator Pattern

Safety and Reliability Patterns 421

6.7.8 Example

The example shown in Figure 6-18 is a heterogeneous dual channel pattern for a train speed
control system. One channel uses a light shining on the inside of a train wheel. By knowing the
circumference of the wheel and by measuring the frequency of the mark appearance (measured
by the optical sensor), one can compute the speed of the train. These data are then filtered,
validated, and used to compute a desired engine output. This engine output is checked for
reasonableness and, if acceptable, then sent to the engine. This is the
OpticalWheelSpeedChannel shown in Figure 6-19.

The other channel uses a GPS to determine train speed. This channel receives ephemeris data
from some set of (at least three) satellites and using the time sent (and comparing it to the time
within the system), it computes the distance to the satellite. Through a process called 3D
triangulation, the train’s position can be calculated. This location is validated and then used to
compute the speed by looking at the rate of change of positions. This speed is then validated
and, if valid, is used to compute the desired engine output to maintain current speed. This is the
GPSSpeedChannel shown in Figure 6-20.

In either channel, if data are identified as invalid, that channel does not command the engine
speed. Because there is another channel to take over the task of determining desired engine
output, the system can continue to operate even if a single point fault results in a channel
shutting down. Further, because this is an extremely heterogeneous design, an error in one
channel will not be replicated in the other. This design provides protection against both random
and systematic faults.

There is nothing profound about the code that is produced to implement this example beyond
what has been described earlier in this chapter. The interesting part is how the channels are

Figure 6-18: Dual Channel example

422 Chapter 6

Figure 6-19: Details of Optical Wheel Speed Channel

connected to provide the ability of the system to detect a fault and continue safe operation in the
presence of the fault.

6.8 Summary
This chapter has presented a number of different patterns that can be used to improve the safety
and reliability of a design executing in its operational context. The first few patterns were small
in scope (often referred to as “design idioms” instead of “design patterns”). The One’s
Complement Pattern replicated primitive data to identify run-time corruption – a problem
common to harsh environments including medical operating rooms, industrial factory settings,

Safety and Reliability Patterns 423

Figure 6-20: Details of GPS Speed Channel

and space. The CRC Pattern is useful in protecting larger volumes of data. The Smart Data
Pattern adds behavior to data (that is, creates classes) to ensure that the data’s preconditions and
constraints are met.

The other patterns in this chapter have a larger scope. The fundamental pattern for the rest of the
chapter is the Channel Pattern, in which the processing of sensory data into actionable
commands is set up as a series of data transform steps. This pattern is elaborated into the
Protected Single Channel Pattern in which checks are added at various steps to validate the
processing within the channel. The Dual Channel Pattern adds two channels so that even if one
fails, the other can continue providing the required service.

This page intentionally left blank

APPENDIX A

UML Notation

The UML is a rich and expressive language. The purpose of this appendix is to help you
understand the most important notations of the language. For more detailed understanding of
the richness of the UML language, the reader is referred to any of a number of books exploring
the UML language in detail, such as my own Real-Time UML: Advances in the UML for Real-
Time Systems (Addison-Wesley, 2004).

In the context of this book, UML was used to graphically depict both the structure and the
behavior of the patterns. Three of the set of diagrams of the UML used in this book are
discussed here: the Class Diagram, the Sequence Diagram, and the State Diagram. The UML
provides a number of other diagrammatic types (not discussed here) and even for the diagrams
discussed, there are other lesser-used features that are not discussed in this appendix.

1.1 Class Diagram
The Class Diagram is for showing system structure. It does this by showing Classes (specifi
cations of software elements), Objects (instances of classes), and relations of various kinds. The
UML is quite flexible about the amount of detail shown on a diagram.

1.1.1 Semantic Elements

This section describes the various elements on the Class Diagram.

1.1.1.1 Nodal Elements

1.1.1.1.1 Class
A class is a representation of an element that combines data elements (called attributes) with
functions that act on them (called operations). Classes are normally implemented as structs

containing the attributes.

1.1.1.1.2 Instance
An instance is a creation of a new variable of the type of the struct that defines the class.

1.1.1.1.3 Interface
An interface is a specification of a set of services (operations and/or event receptions) that a
class must implement. An interface has no implementation and no attributes; it cannot be

Design Patterns for Embedded Systems in C
DOI:10.1016/B978-1-85617-707-8.00007-8
Copyright © 2011 Elsevier Inc. 425

426 Appendix A

Figure A-1 Basic Class Diagram

instantiated. An interface is depicted with the same kind of box as a class, so it is visually
distinguished with the «Interface» stereotype.

1.1.1.1.4 Attribute
A variable held within a class.

1.1.1.1.5 Operation
A function held within a class that typically manipulates the class attributes. In this book, the
common implementation style of an operation is to use the notation <Class Name>_<Operation
Name>, such as SensorClass_getData(). The first parameter passed to the class is a
pointer to the instance of the class.

1.1.1.1.6 Event Reception
A special kind of operation that is invoked asynchronously and causes event transitions to take
place on the state machine associated with the class.

1.1.1.1.7 Comment
A graphical way to representing textual comments. It may be anchored to one or more elements
on the diagram or may be unanchored.

UML Notation 427

Figure A-2 More Class Diagram notations

1.1.1.2 Relations

1.1.1.2.1 Association
The specification of a navigable connection among classes. It may be unidirectional or
bidirectional. Each end of the association is called an association role end and has a multiplicity.
The multiplicity is the number of instances of the target class that participates in the interaction.
“1” is the most common multiplicity and “*” means “zero or more”.

An association is most commonly implemented as a pointer or collection of pointers.

1.1.1.2.2 Link
A link is an instance of an association; that is, a link exists when the pointer is populated with
the address of the instance; if the pointer is NULL, then the link doesn’t exist.

1.1.1.2.3 Generalization
Generalization is an is-a-specialized-kind-of relation with the arrow pointing to the more
general class. The super- (more general) class’s features, including attributes, operations, and
relations, are all inherited by the sub- (more specific) class.

428 Appendix A

Figure A-3 Structured class notation

1.1.1.2.4 Realization
Realization is the relation between an interface and a class that implements the services
specified by an interface.

1.1.1.2.5 Aggregation
Aggregation is a weak form of a whole-part association between two classes where the
diamond indicates the “whole” end. It is weak in the sense that this relation does not imply
creation and destruction responsibilities on the part of the whole.

1.1.1.2.6 Composition
Composition is a strong form of a whole-part association between two classes; again, the (now
filled) diamond is at the end of the whole. It is strong in the sense that the whole is responsible
for both the creation and destruction of the part instance.

1.1.1.2.7 Dependency
This is a general relationship not otherwise denoted. It is common to add a stereotype (such as
«Usage») to indicate what kind of dependency you want. The «Usage» dependency is common

UML Notation 429

Figure A-4 Sequence Diagram

and indicates that the header of the target class or element should be included by the source
class during compilation.

1.1.1.2.8 Type
A type is just that – a data type without the richness of a class to add behavior. It can be an
enumerated type (enum), structured type (struct), array, typedef, or even a #define.

1.2 Sequence Diagram
A Sequence Diagram shows a particular sequence of messages exchanged between a set of
instances. The instances are shown as vertical lines known as lifelines. Messages are shown as
horizontal or downward slanted lines. Time flows (more or less) down the page. In addition,
condition marks can be used to show state or the current value of attributes during the sequence.

1.2.1 Semantic Elements

Lifeline

A lifeline represents the usage of an instance. At the top of the lifeline, it is common to both
name the instance and identify the type of class of the instance.

430 Appendix A

Environment Lifeline

This is a special lifeline that stands for “everything else.” It provides a notational shorthand for
elements omitted from the diagram.

Message

A representation of an interaction between two instances. It may be synchronous (as in a
function call) or asynchronous (as in an asynchronous event exchange). A message is shown as
a directed line that may be either horizontal or downwards sloping.

Synchronous Message

A synchronous event (function call) is shown with a solid arrowhead. It is most commonly
draw as a horizontal line.

Asynchronous Message

An asynchronous message (event reception) is shown with an open arrowhead. It is common
(but not required) to draw it as a downward sloping line.

Condition Mark

This is a hexagon that contains a textual condition that is true at that point in the sequence, such
as the value of a variable or the current state in a state machine.

Comment

It may be anchored to one or more elements on the diagram or may be unanchored.

1.3 State Diagram
A State Diagram is a directed graph consisting of states (rounded rectangles) and transitions
(arrowed lines). It defines the order of action execution for its owner class.

1.3.1 Semantic Elements

1.3.1.1 State
A state is a condition of an instance of a class. A state may contain entry actions, exit actions,
and internal transitions. It is drawn as a rounded rectangle.

1.3.1.2 Nested State
States may contain lower level, nested states. For example, while the DOOR_IS_OPEN state
is true, it might be in DOOR_OPENING, DOOR_CLOSING, or DOOR_WAITING_OPEN

nested state. Nested states are drawn by graphically including the nested state inside a
composite state.

UML Notation 431

1.3.1.3 Composite State
A state that contains nested states. These may be OR-states (as in Figure A-5 and Figure A-6) or
AND-states (as in Figure A-7).

1.3.1.4 OR-State
A set of states at a given level of abstraction; the semantics of state machines are that at a given
level of abstraction, the state machine must be in exactly one of its OR-States. In Figure A-5,
state_0 and state_1 are OR-states; similarly, NestedState1 and NestedState2 are
OR-states.

1.3.1.5 AND-State
AND-states are orthogonal regions within a composite state with the semantics that the instance
must be in exactly one AND-state in each orthogonal region. AND-states are indicated with a
dashed line in the composite state. While it is theoretically possible to implement AND-states in
separate threads, this is almost never done. If an event is shared between AND-states, each
AND-state must be allowed to independently act on it or reject it, but the order of execution of
the transitions triggered by the same event is not known in principle. This leads to the
possibility of race conditions.

If you look at Figure A-7, the transition from state_0 to state_1 is triggered by the event1

event. In this case, the instance enters both states UpperState1 and LowerState3; the
instance is in both states at the same time. AND-states are most commonly used to model
independent properties of an instance.

Figure A-5 Basic State Diagram

432 Appendix A

Figure A-6 Advanced State Diagram

Note also in the figure the transition from state_1 to state_0 triggered by the event
evGoBack. In this case, it doesn’t matter which combination of nested states is currently true;
as long as the instance is in state_1, the transition is valid. However, in the event from nested
state LowerState3 to state_2, triggered by event event10, which nested state in
ANDStateRegion1 is true doesn’t matter, but the instance must be currently in
LowerState3 state for that transition to be taken. If it is not, then the event is discarded.

1.3.1.6 Transition
A transition is a representation of a response to an event while the instance is in a specified
state. It typically has an event signature consisting of an event trigger, guard, and list of actions,
specified using the following syntax:

event trigger ‘[‘ guard condition ‘]’ ‘/’ action list

All of the fields in the event are optional. A transition is shown on a state machine as an
arrowed line coming from a predecessor state and terminating on a subsequent state.

If the event-trigger is omitted, the transition “fires” as soon as the predecessor state is entered,
that is, as soon as the entry actions of the predecessor state complete. See Figure A-7 for an
example.

UML Notation 433

1.3.1.7 Action
An action is a primitive behavior performed under some circumstance in a state machine. This
is most often one of the following:

•	 A function call, for example foo(x)

•	 A direct primitive action, such as x += 10

•	 The generation of an event sent to the current instance or another instance known to the
current instance; a common way to indicate this is with a GEN(event) macro

•	 A list of actions

Actions are separated from the rest of the event signature with a slash (‘/’) character.

1.3.1.8 Entry Action
An entry action is an action performed whenever a state is entered regardless of which
transition is taken.

Figure A-7 AND-states on State Diagram

434 Appendix A

1.3.1.9 Exit Action
An exit action is an action performed whenever a state is left, regardless of which transition is
taken.

1.3.1.10 Transition Action
A transition action is an action performed only when a specific transition is taken.

1.3.1.11 Internal Transition
An internal transition is when an action is performed when an event occurs but a state transition
is not taken (that is, the exit and entry actions are not performed).

1.3.1.12 Event
An event is a specification of an event of interest that is received by the instance. It may be
received synchronously or asynchronously. It may carry parameters, just like a function call.
The syntax used here is that the event that carries data put those data into a struct called
params. This struct may be dereferenced to access the data. For example, in Figure A-6, the
evTerminate event carries a data element code. The actions in the state machine access the
parameter by dereferencing the params struct.

Events may trigger a transition or an internal transition; if they do not, events are quietly
discarded with no actions taken.

An event is consumed by the state machine; that is, once the state machine has completed its
processing step for the current event, it is destroyed. Even if the newly assumed state has an
event triggered by the same event, the event must occur again for this transition to be taken.

1.3.1.13 Event Trigger
The event trigger is the specification of an event. This may be asynchronous (which requires
event queuing), synchronous, a timeout (usually indicated with a tm(duration) or after

(duration) syntax), or when a state variable is changed.

1.3.1.14 Guard
A guard is an (optional) Boolean expression. If the guard evaluates to TRUE, then the transition
is taken; if it evaluates to FALSE, then the event is discarded and the transition is not taken.

1.3.1.15 Default Transition
The default transition indicates that at a given level of abstraction, which, among a set of states,
is entered first by default. It is shown as a transition with no event trigger or guard (although it
may have actions) terminating on a state, but not beginning on one.

1.3.1.16 Pseudostate
A pseudostate is a perhaps poorly-named annotation of special semantics. The UML defines
many pseudostates. In this limited description here, pseudostates include the default transition,
conditional, fork, join, and terminal pseudostates.

UML Notation 435

1.3.1.17 Conditional Pseudostate
The conditional pseudostate indicates multiple potential outgoing transitions initiated by a
single event with the proviso that only one such path will actually be taken. The different paths
are selected on the basis of guards; that is, each transition segment will have a guard that will be
evaluated to TRUE or FALSE. If multiple transition segment guards evaluate to TRUE, then any
one of the true paths can be taken. If no guards evaluate to true then the event is discarded and
no transition is taken. A special guard “else” is provided; if present, this transition path will be
taken only if all the other transition segments are rejected.

1.3.1.18 Fork
When entering a composite state with nested AND-states, a fork can be used to specify
nondefault states to enter, as in Figure A-7. The event event2 triggers the transition from
state_4 to state_1, but specifically enters nested AND-states UpperState2 and
LowerState1, bypassing the default states of UpperState1 and LowerState3.

1.3.1.19 Join
When leaving a composite state with nested AND-states, a join can be used to state the
precondition that the transition should only be taken if the specific set of states (one per
AND-state) is true when the event occurs. See Figure A-7.

1.3.1.20 Terminal Pseudostate
The terminal pseudostate is a special indicator that means that the instance no longer accepts
events, usually because the instance is about to be destroyed.

This page intentionally left blank

& (ampersand), bit-wise operator, 83

^ (caret), bit-wise operator, 83

<< (less than signs), bit-wise

operator, 83

>> (more than signs), bit-wise

operator, 83

| (pipe sign), bit-wise operator, 83

~ (tilde), bit-wise operator, 83

802.11x, 82

A
Abstract

for Channel Pattern, 395

for CRC, 367

for Critical Region Pattern, 182

for Cyclic Executive Pattern, 165

for Debouncing Pattern, 123

for Decomposed And-State

Pattern, 331

for Dual-Channel Pattern, 413

for Guarded Call Pattern, 190

for Hardware Adapter Pattern, 96

for Hardware Proxy Pattern, 85–86

for Harmony/ERT, 46

for Interrupt Pattern, 130

for Mediator Pattern, 100

for Multiple Event Receptor

Pattern, 287

for Observer Pattern, 66, 111–112

for One’s Complement Pattern, 362

for Polling Pattern, 138

for Protected Single Channel

Pattern, 402

for Queuing Pattern, 207

for Rendezvous Pattern, 225–226

for Simultaneous Locking

Pattern, 232–233

for Single Event Receptor

Pattern, 274

for Smart Data Pattern, 380

for State Table Pattern, 296

for Static Priority Pattern, 170–171

Abstract Subject

inheritance and, 68

for Observer Pattern, 66

TMDQueue and, 68, 69

AbstractAndStateClass, 331

AbstractCEThread, 165

AbstractDataTransform, 395–396,

404, 414

AbstractStaticThread, 172

AbstractSubject, 113

notify() and, 112

AbstractThread, Stack and, 173

AbstractTransformChecker, 404, 414

accept(Datum), 112

access() for Hardware Proxy class, 87

accessGasFlow(), 99

accessMotorDirection() as Motor

Status Functions, 90

accessMotorSpeed() as Motor

Status Functions, 90

accessMotorState() as Motor Error

Management Function, 91

Accidents, 359, 360

AcmeO2Adapter.c, 100

AcquireData(), 398

Action, 262

Action list, 26

for transitions, 27

transitions and, 263

Action Sequence, 152

ActionPtr0, 298, 310, 312

ActionPtr1, 298, 311, 312

ActionSet, 331

ActionType, 296–297, 298

<<active>>, 161–162

createThread() and, 173

Index

PreemptiveTask and, 191

ActivelyMonitoring, 264

ActuatorDeviceDriver, 396, 404,

414, 415

Actuators, 82

Ada, 380

Adapter client, for Hardware

Adapter Pattern, 96

addLock(), ResourceList and, 247

After(), 27, 267

Analysis pattern, 44

AND, bit-wise operator, 83

AndStateList, 331–333

ConcreteAndState and, 346

AndStateList.c, 347

AndStateList.h, 346–347

AND-states, 25, 265–267, 327–330

nested states and, 266

Anonymous transition, 263

Aperiodic tasks, 158

API. See Application Program

Interface

Application Program Interface

(API), 5

RTOS and, 163

ApplicationClient, 124

ApplicationElement,

SharedResource and, 133

ApplicationProcessingElement, 139

Architectural design

for Harmony/ERT, 36, 40

patterns for, 45

Armed, 264, 265

Armed::ActivelyMonitoring::

Detecting, 264

Arrival Pattern, 152

ArrythmiaDetector, 64, 68

ASet, 312

asm, 134

437

Index

Asymmetric opportunistic polling,
141

Asynchronous communication, 155
for Message Queuing Pattern, 207

Asynchronous events
state machines and, 270–274
transfer, 26

AsynchronousStateMachine, 271
Mutex and, 272

Attitude.c, 199–200
AttitudeController, 195
AttitudeController.c, 203–204
AttitudeController.h, 202–203
Attitude.h, 198–199
ATTITUDE_MEMORY_FAULT,

364
AttitudeSensor, 248
attribute, 135
Attributes, 9
of Abstract Subject, 68

in classes, 10

B
Bareback, 6
Base class. See Parent class
BCPeriodicPoller, 142–143
BCPeriodicPoller.c, 147
BCPeriodicPoller.h, 144–147
BCPeriodicPoller_Init(), 142
BCPeriodicPoller_startPolling(), 143
BCTimer::installInterruptHandler(),

142
Behavior, 259–261

discontinuous, 260
initialize() and, 260
piece-wise continuous, 261
simple, 259
stateful, 260

BEPeriodicPoller, 142
Binary semaphores, 189
BIT. See Built-in test
Bit fields, 82–83

for bit-mapping device interfaces,
84

problems with, 85
Bit masks, 83
Bit-wise operators, 83
Blocking, 152, 156
PriorityQueue and, 172

schedulability and, 159

Board Support Package (BSP), 163
Boolean expression, guards as, 27
BouncingDevice, 124
Boundary tests, 8
BSP. See Board Support Package
BuildInTestThread, 163
Built-in test (BIT), 3
Busy loops, 166
ButtonDriver.c, 130
ButtonDriver.h, 127–130
ButtonHandler, 135
ButtonHandler.c, 138
ButtonHandler.h, 137–138

C
C4ISR. See Command, Control,

Communications,
Computers, Intelligence,
Surveillance, and
Reconnaissance

CachedQueue
header file, 22–25
implementation of, 25
UML for, 16

CachedQueue_GetSize(), 21
CachedQueue_Init(), 21
CalculateColor_freqToColor(), 398
CalculateFurnaceParams, 406
CallEvent, 26
Cancel event, 262
ChangeEvent, 26
Channel, 416
Channel Pattern, 395–402

Protected Single Channel Pattern
and, 405

ChannelArbiter, 418
CheckTemperature, 409–410
CheckTemperature.c, 411
CheckTemperature.h, 410–411
Child class, 15
Circular waiting condition, deadlock

and, 232
Classes, 9, 10–13. See also

Subclasses
adapters, 98
child, 15
diagram, for UML, 16–17
events in, 29
mediator, for Mediator Pattern,

101–102

objects in, 13–14

parent, 15

subclass and, 21

super class, 68
Cleanup(), 69
clearErrorStatus(), as Motor Error

Management Function, 91
Collaboration roles
for Channel Pattern, 395–396
for CRC, 368
for Critical Region Pattern, 183
for Cyclic Executive Pattern,

165–166
for Debouncing Pattern, 123–125
for Decomposed And-State

Pattern, 331–333
for Dual-Channel Pattern, 414–417
for Guarded Call Pattern, 191
for Hardware Adapter Pattern,

96–97

for Hardware Proxy Pattern,

87–88
for Interrupt Pattern, 131–132
for Mediator Pattern, 101–102
for Multiple Event Receptor

Pattern, 288–290
for Observer Pattern, 112–114
for One’s Complement Pattern, 362
for Ordered Locking Pattern,

244–247
for Polling Pattern, 138–141
for Protected Single Channel

Pattern, 404
for Queuing Pattern, 208–209
for Rendezvous Pattern, 226–227
for Single Event Receptor

Pattern, 275–278
for Smart Data Pattern, 382
for State Pattern, 310–312
for State Table Pattern, 297–299
for Static Priority Pattern,

172–173
Collaborator Interface, for Mediator

Pattern, 101
ColorType, 383
Command, Control,

Communications,
Computers, Intelligence,
Surveillance, and
Reconnaissance (C4ISR), 2

438

Index

Common Object Request Broker

Architecture (CORBA), 6

Communication

hardware, 81–82

with tasks, 155

Compilers, bit fields and, 85

Completion events, 27

Complexity, as Harmony/ERT

criteria, 42

computCRC(), 368

ComputeCRCData, 368

Concrete Observer, for Observer

Pattern, 66

Concrete Subject, for Observer

Pattern, 67

ConcreteAndState, AndStateList

and, 346

ConcreteAndStateClass, 333, 334

ConcreteAndStateType, 333

ConcreteCEThread, 166

ConcreteClient, 113

ConcreteDataTransform, 396, 398,

404, 416

SensorDeviceDriver and, 406

ConcreteSubject, 113–114

ConcreteThread, 172

SharedResource and, 172

ConcreteTransformChecker, 404,

414, 417

Concurrency

CPUs and, 155

definition of, 152

patterns for, 149–256

tasks and, 155

in UML, 161–163

Concurrency unit, 152

Conditional pseudostate, 268

configure()

for Hardware Proxy class, 87

as Motor Management Function,

90

Consequences

for Channel Pattern, 396–397

for CRC, 369

for Critical Region Pattern, 184

for Cyclic Executive Pattern, 167

for Debouncing Pattern, 125

for Decompose And-State

Pattern, 333

for Dual-Channel Pattern, 417

for Hardware Adapter Pattern,

97–98

for Hardware Proxy Pattern,

88–89

for Harmony/ERT, 45–46, 46

for Heterogeneous Redundancy

Pattern, 418

for Homogeneous Redundancy

Pattern, 417

for Interrupt Pattern, 132–134

for Mediator Pattern, 102

for Monitor-Actuator Pattern, 420

for Multiple Event Receptor

Pattern, 290

for Observer Pattern, 67, 114

for One’s Complement Pattern,

363

for Ordered Locking Pattern, 247

for Polling Pattern, 141

for Queuing Pattern, 209

for Rendezvous Pattern, 227

for Sanity Check Pattern, 419

for Simultaneous Locking

Pattern, 236

for Single Event Receptor

Pattern, 278

for Smart Data Pattern, 382–383

for State Pattern, 312–313

for State Table Pattern, 299

for Static Priority Pattern, 173

for TMR, 418

Constraints

on embedded design, 3

preconditions and, 225

Constructors, 11

Context, 308, 311, 313

Decompose AND-State Pattern

and, 333

me and, 312

Context.c, 317–318

Context.h, 315–317

Continuous behavior, 259

Continuous integration, 7–8

controlLoop(), 167

ControlThread, 163

ConvertToFrequency_computeFreq

(), 398

CORBA. See Common Object

Request Broker Architecture

cos(), 259

Counting semaphores, 189

Thread Barrier Pattern and, 228

Coverage tests, 8

CPUs

concurrency and, 155

Interrupt Pattern and, 134

CRC. See Cycle Redundancy Check

Pattern

CRCCalculator, 369

CRCCalculator.c, 372

CRCExample.c, 373

CRCProtectedData, 368

createThread(), > and, 173

Critical Region Pattern, 182–190

deadlock and, 232

Hardware Proxy Pattern and, 89

Multiple Event Receptor Pattern

and, 290

Ordered Locking Pattern and, 248

race condition and, 270

Single Event Receptor Pattern

and, 278

Criticality, 152

tasks and, 157

CRRobotArmManager.c, 189

CRRobotArmManager.h, 186–189

CRSharedResource, 183

CurrentState, 308, 311, 313

Cycle Redundancy Check Pattern

(CRC), 363, 367–380

Protected Single Channel Pattern

and, 405

CycleTimer, 166

Cyclic Executive Pattern, 164–170

Cyclic executive scheduling, 5

problems with, 156

processing loop, 155–157

tasks for, 155

CyclicExecutive, 165–166

D
Data Distribution Service (DDS), 6

DataClient, 362

CRC and, 368

DataType, 368

DataValue, 51

Datum

AbstractSubject and, 113

Observer Pattern and, 114

DDS. See Data Distribution Service

439

Index

Deadlines, 2

Cyclic Executive Pattern and, 164

definition of, 152

tasks and, 159

Deadlock, 152

avoidance patterns, 231–255

Interrupt Pattern and, 132

Debouncer, 124–125
Debouncing Pattern, 122–130
DebouncingTimer, 125–126
Debugging, 4, 8–9
Decomposed And-State Pattern,

330–355

Default pseudostate, 268

Defensive design, 380

#define, 83, 364

Deinstall function, for Interrupt

Pattern, 131

delay(), 125

Derived class. See Child class

Design

defensive, 380

detailed, 37

for Harmony/ERT, 36–37

criteria for, 40–42

validation of, 44

mechanistic, 37

Design pattern. See Patterns

Destroy_semaphore(Semaphore*),

227

Destructors, 11

Detailed design, for Harmony/ERT,

37

Detecting, 264

Deterministic semantics, 270

Device, 139–140

DeviceAddr, for Hardware Proxy

class, 87–88

Dijkstra, Edsger, 189

Direct Memory Access (DMA), 82

disable()

for Hardware Proxy class, 87

as Motor Management Functions,

90

Discontinuous behavior, 260

DispatchEvent, 271–272

DisplayClient.c, 121

DisplayClient.h, 120–121

Distributability, as Harmony/ERT

criteria, 42

Diverse Design Pattern, 413

DMA. See Direct Memory Access

Done event, 263

DoneWaiting, 267

DoorOpen event 261, 262

Dual-Channel Pattern, 413–422

dumpList(), 116

Dyadic access functions, resource

Client and, 247

E
Earliest deadline first (EDF), 5

for Dynamic Priority Pattern,

174–175

ECG_Module header file, 54

ECG_Module.c, 58–59

ECGPkg.h, 52–53

EDF. See Earliest deadline first

Embedded tool chain, 4–5

EMGChannel.c, 402

EMGChannel.h, 400–402

EMGSensorDeviceDriver, 397

emitMicrowaves(), as action, 262

enable(), as Motor Management

Functions, 90

Encapsulation boundary, 10, 13

Encryption, security and, 89

Energy consumption, as Harmony/

ERT criteria, 42

EnteringHouse, 264

entry1(), 263

entry2(), 263

EntryPoint, StartAddr and, 173

enum, 275

Errors, 360

ErrorCodeType, 372, 382

errorHandler(), 368

ErrorManager, 382

ErrorState.c, 352

ErrorStateClass, 334, 348–349

ErrorStateClass.h, 349–352

Ethernet, 82

evAbort, 355

evDelayedActivation, 264

evDigit(c:char), 289

evDisarm, 265

evDot, 289

evEnable, 355

evEndOfString, 289

Event(s), 296, 298

in classes, 29

handlers, 27

And-states and, 329

name, 263

parameters of, 27

propagation, 329

receptors, event dispatcher

function and, 29

RTOS and, 163

signature, 26

Single Event Receptor Pattern

and, 275

source, for task identification,

161

states and, 27

triggers, transitions and, 27

in UML, 26

Event dispatcher function, event
receptors and, 29

eventDispatch(), 297, 299–300

EventQueue, 272

eventReceive(), 124

EventType, 272, 275, 298

evError, 355

evImmediateActivation, 264

evRun, 355

evWhiteSpace, 289

executeStep(), 103

Execution efficiency, of Observer

Pattern, 64–65

Execution time, 153

exitAction(), 263

ExitingHouse, 264

F
FailuretoZero, 269

Faults
reliability and, 360––361
safety and, 360––361

Fault Extenuators, 361

Fault Identifiers, 361

Fault Manifestors, 361

Fault Means and Effect Analysis

(FMEA), 359

Fault Seeding tests, 8

File system services, RTOS and,

163

Final pseudostate, 263, 268

Finite state machine (FSM), 25–33,

261–274

440

Index

FLAG, WAIT_FOREVER and, 193

FlightDataDisplay, 195

FlightDataDisplay.c, 207

FlightDataDisplay.h, 205–207

FMEA. See Fault Means and Effect

Analysis

Fork, threads and, 154

Fork pseudostate, 268

FSM. See Finite state machine

Function pointers

OO and, 13

in specialization, 16, 18

Functional tests, 8

FurnaceController, 406

G
Gas Display, 98

Gas Mixer, 98

GasControlExec, 167

GasControlExecutive.c, 169

GasController, handleGasData()

and, 224

GasController.c, 222–223

GasController.h, 221–222

GasController_handleGasData(),

221

GasData, 210–211

GasData.c, 122, 213

GasDataExample.h, 212

GasData.h, 122, 212–213

GasDataQueue

insert() and, 213

remove() and, 213

GasDataQueue.c, 217–218

GasDataQueue.h, 214–217

GasDisplay, printGasData() and,

224

GasDisplay.c, 224

GasDisplay.h, 223–224

GasDisplay_printGasData(), 221

GasDisplayThread.c, 170

GasMixerClient, 119

GasNotificationHandle, 115

GasProcessingThread,

SensorThread and, 224

GasProcessingThread_processData

(), 221

GasSensor, 116

GasSensor.c, 119

GasSensor.h, 117–119

GAS_TYPE, 210

GCC. See GNU C Compiler

Generalization, in UML, 15

get02Conc(), 99

get02Flow(), 99

getData(), 133

getNextIndex(), 213

getValue(), 183

getXXData(), 218

gimme02Conc(), 98

gimme02Flow(), 98

Global data declarations, 155

GN_PROCESSING

FRACTIONAL

PART_STATE, 299, 312

GN_Processing Fraction State, 311,

323–324

GN_Processing Fraction State.c,

326

GN_Processing Fraction State.h,

324–326

GN_PROCESSING WHOLE

PART_STATE, 299, 312

GN_Processing Whole State, 311,

321

GN_Processing Whole State.c, 323

GN_Processing Whole State.h,

321–323

GNU C Compiler (GCC), 4, 135

Got Number, 299

GPSSpeedChannel, 421

graspAt(), 103–104

Green Hills Software, Integrity by, 5

Guards

as Boolean expression, 27

transitions and, 263

Guarded Call Pattern, 190–207

Hardware Proxy Pattern and, 89

Multiple Event Receptor Pattern

and, 290

Mutex and, 299

priority inversion from, 210

race condition and, 270

Rendezvous Pattern and, 228

Single Event Receptor Pattern

and, 278

GuardedCallExample.h, 195–196

GuardedResource

lock() and, 192

Mutex and, 191–192

GuardedSource, 190

GuardType, 296–297, 298

H
handleGasData(), gasController

and, 224

handleInterrupt_x(), 132

handleTimerInterrupt(), 141

Hard real-time systems, 2

Hardware

categories of, 81–82
codevelopment, 7–8
design patterns for accessing,

79–147

infrastructure, 81

Hardware Adapter, for Hardware

Adapter Pattern, 96

Hardware Adapter Class, for

Hardware Adapter Pattern,

97

Hardware Adapter Pattern, 96–100

Polling Pattern and, 142

Hardware Device

for Hardware Adapter Pattern, 97

for Hardware Proxy Pattern, 87

Hardware Interface to Client, for

Hardware Adapter Pattern,

97

Hardware Proxy

for Hardware Adapter Pattern, 97

for Hardware Proxy Pattern, 87

Specific Collaborator and, 102

Hardware Proxy Pattern, 85–95

Hardware Adapter Pattern and, 98

Polling Pattern and, 142

HardwareProxyExample.h, 91–92
Harmony for Embedded RealTime

(Harmony/ERT), 35–78

architectural design for, 36, 40

design for, 36–37

criteria for, 40–42
patterns and technologies for,

42–44
validation of, 44

detailed design for, 37

macrocycle for, 36

mechanistic design for, 37

microcycle for, 36, 38–39

nanocycle for, 36

timescales for, 36

441

I

Index

Harmony/ERT. See Harmony for
Embedded RealTime

Hazards, 359

Head and, Message, 209

HESensor, 217–218

Heterogeneous redundancy, 360

Heterogeneous Redundancy Pattern,

413, 418

HistogramDisplay, 64, 68

HistogramDisplay header file,

54–56
HistogramDisplay.c implementation

file, 59–61
with Observer Pattern, 77

Homogeneous redundancy, 360

Homogeneous Redundancy Pattern,

413, 417

IBM Rational, 36

IDEs. See Integrated Development

Environments

Idioms, 361

Impedance matching, 96

Implementation strategies

for Channel Pattern, 397

for CRC, 369

for Critical Region Pattern, 184

for Cyclic Executive Pattern, 167

for Debouncing Pattern, 125–126

for Decompose And-State

Pattern, 333

for Guarded Call Pattern,

192–193

for Hardware Adapter Pattern, 98

for Hardware Proxy Pattern, 89

for Interrupt Pattern, 134–135

for Mediator Pattern, 102

for Multiple Event Receptor

Pattern, 290

for Observer Pattern, 114

for One’s Complement Pattern,

363

for Ordered Locking Pattern,

248

for Polling Pattern, 141

for Protected Single Channel

Pattern, 405

for Queuing Pattern, 210

for Rendezvous Pattern, 228

for Simultaneous Locking

Pattern, 236

for Single Event Receptor

Pattern, 278

for Smart Data Pattern, 383

for State Pattern, 313

for State Table Pattern, 299

for Static Priority Pattern, 173–174

Independent processing, for task
identification, 161

Infrastructure hardware, 81

Inheritance, 15

Abstract Subject and, 68

priority, 193

subclass and, 68

super class and, 68

virtual functions and, 68

Init(), 69

TokenizerStateTable and, 297

Initial transition, 263

initialize()

as action, 262

behaviors and, 260

for Hardware Proxy class, 88

Mediator Pattern and, 101

as Motor Management Functions,

90

states and, 260

Initializers, 11

KinematicData_Init(), 195

InitRelations(), 398

insert()

GasDataQueue and, 213

QTask and, 209

installInterruptTimer(), 140

Install function, for Interrupt

Pattern, 131

Instances. See Objects

int, 13, 275, 310

int*, for Hardware Proxy class, 87

int MessageQueue_getNextindex

(MessageQueue* me, int

index), 208

int MessageQueue_insert

(MessageQueue* me,

Message m), 209

Integrated Development

Environments (IDEs), 4

Integrity, by Green Hills

Software, 5

Interarrival time, 153

Interface device recurrence

properties, for task

identification, 161

Internal Data Formatting Functions

(private), as motor proxy,

91

Interrupt, 135

Interrupt handler, for task

identification, 161

Interrupt Pattern, 130–138

Polling Pattern and, 141

InterruptHandler, 131–132

InterruptVectorTable, 132

Intrusion, 264

ISR

Interrupt Pattern and, 132–134
Polling Pattern and, 141

itsContext, 313

itsOtherChannel, 414

itsPartMutex, 234

J
Jitter, 153

Polling Pattern and, 141

Join pseudostate, 268

Joins, threads and, 154

Joint Test Architecture Group

(JTAG), 4, 9

JTAG. See Joint Test Architecture

Group

K
Keypress, 26

KinematicData.c, 201–202

KinematicData_Cleanup(), 195

KinematicData.h, 200–201

KinematicData_Init(), 195

KinematicModelClient, 248

Klein, Jack, 369

L
Leaky queue, 51

Light Controller Client,

355

LightController.c, 346

LightController.h, 337–346

LightPkg.h, 335–337

Linkers, 4

Load testing, 8

442

Index

Loaders, 4

lock()

GuardedResource and, 192

MessageQueue and, 209

Mutex and, 235

QueryMutex and, 235

semaphores and, 189, 191

lockDyadic(), resourceClient and,

244

Locking, deadlock and, 232

lock_semaphore(Semaphore*), 227

Long, 51

Loops

busy, 166

Cyclic Executive Pattern and, 164

PID, 259

for priority-based scheduling,

157

for time-slicing schedule, 157

M
Macrocycle, for Harmony/ERT, 36

main(), 136–137

Main.c, 63–64

Static Priority Pattern and,

175–177

Maintainability

as Harmony/ERT criteria, 42

of Observer Pattern, 64–65

marshal()

for Hardware Proxy class, 88

as Internal Data Formatting

Function, 91

MasteredResource, 234

MasterResources,

SimplifiedResourceMaster

and, 235

MAX_POLL_DEVICES, 140

me, 10, 310

Context and, 312

Mealy-Moore FSM, 25

Mean Time Between Failure

(MTBF), 359

Mechanistic design, for Harmony/

ERT, 37

Mediator class, for Mediator

Pattern, 101–102

Mediator Pattern, 100–111

MedicalDisplay, 143

Memory. See Resource usage

MERSMs. See Multiple event

receptor finite state

machines

Message

Head and, 209

QTasks and, 208

Message* MessageQueue_remove

(MessageQueue* me), 209

Message Queuing Pattern,

asynchronous

communication for, 207

MessageQueue

lock() and, 209

Mutex and, 209

QTask and, 209

release() and, 209

Microcycle, for Harmony/ERT, 36,

38–39

MicrowaveEmitter, 126

Microwaving, 261

Middleware, 6–7

Milliseconds, states and, 267

Minimum interarrival time, 158

Mishaps, 359

Mix-in, 68

ModeStateClass, 334, 348–349

ModeStateClass.c, 354

ModeStateClass.h, 352–354

Monadic functions, 244

MonadicAccessFunction, 244–245

Monitor-Actuator Pattern, 420

Motor Control Functions, for motor

proxy, 91

Motor Error Management

Functions, for motor proxy,

91

Motor Management Functions, for

motor proxy, 90

Motor proxy, 89––91

Motor Status Functions, for motor

proxy, 90

MotorController.c, 181

MotorController.h, 179–180

MotorData.c, 181

MotorData.h, 92–93, 177–178, 181

MotorDisplay.c, 179

MotorDisplay.h, 178–179

MotorPositionSensor.c, 178

MotorProxy.c, 95

MotorProxy.h, 93–95

MoveToYPosition, 270

MovingAverageFilter_filter(), 398

MovingRobotArm, 269–270

MTBF. See Mean Time Between

Failure

MultimasteredResource, 234

ResourceMaster and, 235

trylock() and, 235

Multiple event receptor finite state

machines (MERSMs), 287

Multiple Event Receptor Pattern,

287–296

Context and, 311

Multitasking preemptive scheduling

definition of, 153

mutual exclusion and, 189

priority inversion and, 159

Mutate(), for Hardware Proxy class,

88

Mutex

AsynchronousStateMachine and,

272

Guarded Call Pattern and, 299

GuardedResource and, 191–192

lock() and, 235

MessageQueue and, 209

Multiple Event Receptor Pattern

and, 289

release() and, 172, 235

SharedResource and, 172

Single Event Receptor Pattern

and, 276

State Pattern and, 311

State Table Pattern and, 298

StaticPriorityScheduler and, 172,

192

trylock() and, 234

mutexID, 192

Mutual exclusion. See also Mutex

deadlock and, 232

multitasking preemptive

scheduling and, 190

semaphores, 190

trylock() and, 236

N
N2Sensor, 217–218

Name, for Harmony/ERT, 45

Nanocycle, for Harmony/ERT, 36

Navigator, 195

443

Index

Navigator.c, 205

Navigator.h, 204–205

Nested states, 25, 263–264

And-states and, 266

Network input/output services,

RTOS and, 163

NewState, 297

Nonperiodic tasks, 158

NoNumberState, 311

NONUMBER_STATE, 299, 312

NoNumberState.c, 321

NoNumberState.h, 319–321

NOT, bit-wise operator, 83

Notification handle, for Observer

Pattern, 66

NotificationHandle

AbstractSubject and, 113

Observer Pattern and, 114

TMDQueue and, 69

NotificationHandle.c, 75–77

NotificationHandle.h, 74

notify(), 69, 113

AbstractSubject and, 112

SynchronizingThread and, 227

Null events, 27, 29

Null_id, 29

NULL_STATE, 299, 312

N-way programming, 360

O
O2Sensor, 217–218

O2Sensor.c, 220

O2Sensor.h, 220

Object adapters, 98

Object Analysis, 36

Object Management Group (OMG),

6

Object-oriented programming (OO)

function pointers and, 13

vs. structured language, 9–10

Objects, in classes, 11, 13–14
Observer Pattern, 51–77, 111–122

HistogramDisplay.c with, 77

Rendezvous Pattern and, 227,

228

TMDQueue header file with,

70–74

TMDQueue implementation file

with, 74

Off, 261, 265

OMG. See Object Management
Group

One’s Complement Pattern,
362–367

CRC and, 369

Protected Single Channel Pattern

and, 405

OnesCompProtectedDataElement,

362

OO. See Object-oriented

programming

Operating system (OS), 5–6

Operations, 9

of Abstract Subject, 68

in classes, 10

states and, 25

Opportunistic Polling Pattern, 139

OpportunisticPoller, 140

OpticalWheelSpeedChannel, 421

OR, bit-wise operator, 83

Ordered Locking Pattern, 242–255

Hardware Proxy Pattern and, 89

OrderedResource

ResourceClient and, 245, 247

resourceID and, 244

OrderedResource_Init(), resourceID
and, 244

OR-states, 263–265

OS. See Operating system

OS_create_semaphore, 195

OS_disable_task_switching(), 184

OS_enable_task_switching(), 184

OS_lock_semaphore(), 195

OSQPend(), 176

OS_release_semaphore(), 195

OSSemaphore, 195

OutputQueue, 21

OwnShipAttitude, 363–364

OwnShipAttitude.c, 367

OwnShipAttitude.h, 365–367

P
Parameters, of events, 27

Parent class, 15

subclass and, 21

Passed by reference, 207

Passed by value, threads and, 207

PatientData, 369, 373–375

PatientData.c, 380

PatientDataClass, 383, 392–393

PatientDataClass.c, 394

PatientDataClass.h, 393–394

PatientData.h, 375–380

PatientDataType, 369

Patterns

for accessing hardware, 79–147

analysis, 44

Arrival Pattern, 152

Channel Pattern, 395–402

for concurrency, 149–256

CRC, 363, 367–380

Protected Single Channel

Pattern and, 405

Critical Region Pattern, 182–190

deadlock and, 232

Hardware Proxy Pattern and,

89

Multiple Event Receptor

Pattern and, 290

Ordered Locking Pattern and,

248

race condition and, 270

Single Event Receptor Pattern

and, 278

Cyclic Executive Pattern,

164–170
Debouncing Pattern, 122–130
Decomposed And-State Pattern,

330–355

Diverse Design Pattern, 413

Dual-Channel Pattern, 413–422

Guarded Call Pattern, 190–207

Hardware Proxy Pattern and,

89

Multiple Event Receptor

Pattern and, 290

Mutex and, 299

priority inversion from, 210

race condition and, 270

Rendezvous Pattern and, 228

Single Event Receptor Pattern

and, 278

Hardware Adapter Pattern,

96–100

Polling Pattern and, 142

Hardware Proxy Pattern, 85–95

Hardware Adapter Pattern and,

98

Polling Pattern and, 142

for Harmony/ERT design, 44–77

444

Index

basic structure of, 45–46

development and, 47–65

formats for, 46

Heterogeneous Redundancy

Pattern, 413, 418

Homogeneous Redundancy

Pattern, 413, 417

Interrupt Pattern, 130–138
Polling Pattern and, 141

Mediator Pattern, 100–111

Message Queuing Pattern,

asynchronous
communication for, 207

Monitor-Actuator Pattern, 420

Multiple Event Receptor Pattern,

287–296

Context and, 311

Observer Pattern, 51–77,

111–122

HistogramDisplay.c

implementation file with, 77

Rendezvous Pattern and, 227,

228

TMDQueue header file with,

70–74

TMDQueue implementation

file with, 74

One’s Complement Pattern,

362–367

CRC and, 369

Protected Single Channel

Pattern and, 405

Opportunistic Polling Pattern,

139

Ordered Locking Pattern,

242–255

Hardware Proxy Pattern and,

89

Periodic Polling Pattern, 140

Polling Pattern, 138–147

Interrupt Pattern and, 135

Protected Single Channel Pattern,

402–413

Channel Pattern and, 397

Protected Single Channel Pattern

and, 405

Queuing Pattern, 207–224

Hardware Proxy Pattern and,

89

Rendezvous Pattern and, 227

Single Event Receptor Pattern
and, 278

reliability, 357–423

Rendezvous Pattern, 224–231

Mediator Pattern and, 102–103

threads and, 227

for resource management,

149–256

safety, 357–423

Sanity Check Pattern, 419

Channel Pattern and, 397

Simultaneous Locking Pattern,

232–242

Hardware Proxy Pattern and,

89

Ordered Locking Pattern and,

248

Single Event Receptor Pattern,

274–287

Smart Data Pattern, 380–394
Smart Pointer Pattern, Smart Data

Pointer and, 383

for state machines, 257–356

State Pattern, 308–327

State Table Pattern, 296–308

Static Priority Pattern, 170–181

Related Patterns and, 193

Strategy Pattern, Mediator Pattern

and, 102–103

Synchronization Pattern, 153

Task Coordination Pattern, Cyclic

Executive Pattern and, 167

Thread Barrier Pattern, counting

semaphores and, 228

TMR, 418–419

Channel Pattern and, 397

Pattern hatching, for Harmony/ERT

pattern designs, 47–49

Pattern instantiation

design pattern solution and, 45

for Harmony/ERT design, 44,

50–51
Pattern mining, for Harmony/ERT,

49–50
Pattern structure

for Channel Pattern, 395

for CRC, 368

for Critical Region Pattern,

182–183

for Cyclic Executive Pattern, 165

for Debouncing Pattern, 123

for Decomposed And-State

Pattern, 331

for Dual-Channel Pattern, 414

Guarded Call Pattern, 190–191

for Hardware Adapter Pattern, 96

for Hardware Proxy Pattern, 86

for Harmony/ERT, 46

for Interrupt Pattern, 131

for Mediator Pattern, 101

for Multiple Event Receptor

Pattern, 288

for Observer Pattern, 66, 112

for One’s Complement Pattern,

362

for Ordered Locking Pattern, 243

for Polling Pattern, 138

for Protected Single Channel

Pattern, 403

for Queuing Pattern, 208

for Rendezvous Pattern, 226

for Simultaneous Locking

Pattern, 233–234

for Single Event Receptor

Pattern, 274–275

for Smart Data Pattern, 381

for State Table Pattern, 296–297

for Static Priority Pattern, 171

Pause event, 262

Paused, 261, 268

PDF. See Probability density

function

Performance, as Harmony/ERT

criteria, 41

Period, 153

Polling Pattern and, 141

tasks and, 158

Periodic Polling Pattern, 140

PeriodicPoller, 140–141

Persistent failure, 360

PID. See Proportional Integral-

Differential
Piece-wise continuous behavior,

261

poll(), 138

PollDataClient, 141

Polling Pattern, 138–147

Interrupt Pattern and, 135

PollTimer, 141

Polymorphism, 14–15

445

Index

POORLY_ORDERED_ACCESS,

247

Portability, as Harmony/ERT

criteria, 42

Position.c, 197–198

Position.h, 196–197

PositionPredictor, 237

PositionSensor, 248

POST. See Power on self-test

post(), 271

PostSignal(), 274

Power on self-test (POST), 3

PowerOn event, 262

Precondition tests, 8

Preconditions, constraints and, 225

PredecessorState, 263

Predictability, 3

as Harmony/ERT criteria, 41

Predictor-corrector algorithm, 7

Preemptive scheduling, 156

basic task structure with,

157–160

deadlock and, 232

PreemptiveTask, 190–191

> and, 191

printf(), 224

printf tests, 9

printGasData() and, GasDisplay,

224

Priority ceiling, 193

Priority inheritance, 193

Priority inversion, 153

from Guarded Call Pattern, 210

multitasking preemptive

scheduling and, 159

unbounded, 160

Priority-based scheduling, 156

loops for, 157

PriorityQueue

blocking and, 172

StaticTaskControlBlock and, 172

Private functions, Queuing Pattern

and, 208–209

Probability density function (PDF),

8

Problem

for Channel Pattern, 395

for CRC, 367

for Critical Region Pattern, 182

for Cyclic Executive Pattern, 165

for Debouncing Pattern, 123

for Decomposed And-State

Pattern, 331

for Dual-Channel Pattern, 414

Guarded Call Pattern, 190

for Hardware Adapter Pattern, 96

for Hardware Proxy Pattern, 86

for Harmony/ERT, 46

for Interrupt Pattern, 130–131

for Mediator Pattern, 100

for Multiple Event Receptor

Pattern, 287–288

for Observer Pattern, 66, 112

for One’s Complement Pattern,

362

for Ordered Locking Pattern, 243

for Polling Pattern, 138

for Protected Single Channel

Pattern, 402

for Queuing Pattern, 207–208

for Rendezvous Pattern, 226

for Simultaneous Locking

Pattern, 233

for Single Event Receptor

Pattern, 274

for Smart Data Pattern, 381

for State Table Pattern, 296

for Static Priority Pattern, 171

Procedures, 9

Processors, bit fields and, 85

Proportional Integral-Differential

(PID), 259

Protected Single Channel Pattern,

402–413

Channel Pattern and, 397

Pseudoconcurrency, 153

Pseudostates, 25, 267

in UML, 268

Public functions, Queuing functions

and, 209

Publish-Subscribe Pattern. See

Observer Pattern

Purpose, for Harmony/ERT, 45

Push implementation, 64

Q
QoS. See Qualities of service

QRSDetector, 64, 68

QTask

insert() and, 209

Message and, 208

MessageQueue and, 209

remove() and, 209

Qualities of service (QoS), 3

design patterns and, 44

testing, 8

QueryMutex

lock() and, 235

tryLock() and, 235

Queue, 16–22

code listing, 18–20

implementation, 20

leaky, 51

testing, 21–22

UML for, 16–17

Queue_Create(), 21

QUEUE_SIZE, 208

Queuing Pattern, 207–224

Hardware Proxy Pattern and, 89

Rendezvous Pattern and, 227

Single Event Receptor Pattern

and, 278

QUIT_TIME, 267, 268

R
Race condition, 153

And-states and, 329

Critical Region Pattern and, 270

Guarded Call Pattern and, 270

Interrupt Pattern and, 132–133

synchronous state machines and,

270

rAction1(), 263

rAction2(), 263

Range tests, 8

Rate-monotonic scheduling, 5, 171

Reactive elements, statecharts and, 25

Ready, 260–261, 261

Ready to run, 156

Real-Time Action, 153

Real-time operating systems

(RTOSs), 4, 5–6, 163–164

Interrupt Pattern and, 135

Real-time systems, 2

Recurring cost, 3

as Harmony/ERT criteria, 42

Redundancy, 360, 363

for Protected Single Channel

Pattern, 402

Reference model, 44

register(), Rendezvous Pattern and,

228

Regression tests, 8

446

Index

Related information, for task

identification, 161

Related patterns

for Channel Pattern, 397

for CRC, 369

for Critical Region Pattern, 184

for Cyclic Executive Pattern,

167

for Debouncing Pattern, 126

for Decompose And-State

Pattern, 334

for Dual-Channel Pattern,

417–420

for Guarded Call Pattern,

193–194

for Hardware Adapter Pattern, 98

for Hardware Proxy Pattern, 89

for Mediator Pattern, 102–103

for Multiple Event Receptor

Pattern, 290

for Observer Pattern, 115

for One’s Complement Pattern,

363

for Ordered Locking Pattern, 248

for Polling Pattern, 142

for Protected Single Channel

Pattern, 405

for Queuing Pattern, 210

for Rendezvous Pattern, 228

for Simultaneous Locking

Pattern, 236

for Single Event Receptor

Pattern, 278

for Smart Data Pattern, 383

for State Pattern, 313–314

for State Table Pattern, 299–300

for Static Priority Pattern,

174–175
Static Priority Pattern and, 193

Relations, of Abstract Subject, 68

release()

MessageQueue and, 209

Mutex and, 172, 235

semaphores and, 189

releaseDyadic(), 244

Release_semaphore(Semaphore*),

227

Reliability

faults and, 360––361

as Harmony/ERT criteria, 42

patterns, 357–423

up-time and, 359

remove()

GasDataQueue and, 213

QTask and, 209

RemoveInterruptHandler, 141

Rendezvous Pattern, 224–231

Mediator Pattern and, 102–103

threads and, 227

reset(), Mediator Pattern and, 101

ResetQuitTime, 268

Resource management, patterns for,

149–256
Resource usage

as Harmony/ERT criteria, 42

of Observer Pattern, 64–65

ResourceClient, 235, 245–247

OrderedResources and, 245

resourceID and, 245

ResourceClient

dyadic access functions and, 247

lockDyadic() and, 244

ResourceClients, OrderedResources

and, 247

ResourceID

OrderedResource and, 244

OrderedResource_Init() and, 244

ResourceClient and, 245

ResourceList, 244

addLock() and, 247

ResourceList.c, 255

ResourceList.h, 252–255

ResourceMaster, 234

MultimasteredResources and,

235

ResourceReference, 247

Resume event, 262

Return From Interrupt (RTI), 132

Reusability, as Harmony/ERT

criteria, 42

Richardson, Mark, 264

Robot Arm Manager, 103–104

RobotArmManager.c, 111

RobotArmManager.h, 105–111

Round robin scheduling, 5

problems with, 156

RoutePlanningClient, 248

RS-232, 82

RS-485, 82

RTI. See Return From Interrupt

RTOSs. See Real-time operating

systems

run(), 166

_run(), 176

Running, 156

Run-time checking, 380

Run-time flexibility, of Observer

Pattern, 64–65
Run-to-completion, 328–329

S
Safety

faults and, 360––361

as Harmony/ERT criteria, 42

patterns, 357–423

security and, 359

Safety assurance, for task
identification, 161

SafetyFailState, 269

SafetyMonitorClient, 119

Sanity Check Pattern, 419

Channel Pattern and, 397

Scalability, as Harmony/ERT

criteria, 42

Schedulability

blocking and, 159

Cyclic Executive Pattern and,

164–165

definition of, 153

as Harmony/ERT criteria, 41

Static Priority Pattern and,

170

Scheduling

cyclic executive, 5

problems with, 156

processing loop, 155–157

tasks for, 155

multitasking preemptive

definition of, 153

mutual exclusion and, 189

priority inversion and, 159

preemptive, 156

basic task structure with,

157–160

deadlock and, 232

priority-based, 156

loops for, 157

rate-monotonic, 5, 171

round robin, 5

problems with, 156

time-slicing, 156

loops for, 157

Scrum, 36

447

Index

Security

encryption and, 89

safety and, 359

Semaphore* create_semaphore

(void), 227

Semaphores, 159, 189

binary, 189

counting, 189

Thread Barrier Pattern and, 228

lock() and, 191

mutual exclusion and, 189

Rendezvous Pattern and, 227

RTOS and, 163

SEM_INVERSION_SAFE, 193

sendEvent(), 124

SensorDeviceDriver, 396, 404, 417

ConcreteDataTransform and, 406

SensorMaster, 236–237

SensorMaster.c, 242

SensorMaster.h, 239–242

Sensors, 82

SensorThread, 217–218

GasProcessingThread and, 224

SensorThread.c, updateData of,

219–220

SensorThread.h, 218–219

SensorThread_updateData(), 218

SERSMs. See Single event receptor

state machines

ServerClass, 382, 383

setData(), 133

setPollTime(t), 140

setValue(), 183

SharedData.c, 169–170

SharedData.h, 169

SharedResource

ApplicationElement and, 133

ConcreteThread and, 172

Mutex and, 172

show(), 119

SignalEvent, 26

Silence, 264

Simple behavior, 259

SimplifiedResourceMaster, 234

MasterResources and, 235

Simulating on host, 9

Simultaneous Locking Pattern,

232–242

Hardware Proxy Pattern and, 89

Ordered Locking Pattern and, 248

Single event groups, for task

identification, 161

Single Event Receptor Pattern,

274–287

Single event receptor state machines

(SERSMs), 274

Singletons, 13

Smart Data Pattern, 380–394

Smart devices, 81

Smart Pointer Pattern, Smart Data

Pointer and, 383

SmartColor, 388–389

SmartColor.c, 392

SmartColor.h, 389–392

SmartDataExample.h, 384–386

SmartDataType, 382

SmartDataType_cmp(), 382

SmartDataType_getPrimitive(), 382

SmartDataType_getValue(), 382

SmartDataType_Init(), 382

SmartDataType_setValue(), 382

SmartInt.c, 388

SmartInt.h, 386–388

Soft real-time systems, 2

Solution, for Harmony/ERT, 45

Specialization

function pointers in, 16, 18

subclass and, 15–16

Specific Collaborator, for Mediator

Pattern, 101–102

Stack, AbstractThread and, 173

start(), 166

StartAddr, EntryPoint and, 173

startTimer(), 141

States

And-states, 25, 265–267,

327–330

nested states and, 266

definition of, 261

events and, 27

initialize() and, 260

milliseconds and, 267

nested, 25, 263–264

And-states and, 266

operations and, 25

OR-states, 263–265

pseudostates, 25, 267

in UML, 268

State explosion, UML and, 266

State machines

asynchronous events and,

270–274

FSM, 25–33, 261–274

MERSMs, 287

patterns for, 257–356

SERSMs, 274

synchronous, 270–274

State Table Pattern and, 299

UML and, 263–264

State Pattern, 308–327

State space, 330

State Table Pattern, 296–308

StateActionSet, 311, 312, 313, 334

StateActionSet.c, 318–319, 348

StateActionSet.h, 318, 347–348

Statecharts

reactive elements and, 25

UML and, 25

Stateful behavior, 260

stateID, 277

State Table Pattern and, 296

TokenizeMultiReceptor and, 289

stateList, 308, 311

StatePattern.h, 314–315

StateTableEntries, 299

StateTablePattern.h, 301

STATETYPE, 271

stateVariable, 271

Static Priority Pattern, 170–181

Related Patterns and, 193

StaticPriorityScheduler, 173

Mutex and, 172, 192

StaticTaskControlBlock,

PriorityQueue and, 172

Statistical tests, 8

Stereotypes, 405

stopEmittingMicrowaves(), as

action, 262

stopPolling(), 141

Strategy Pattern, Mediator Pattern

and, 102–103

Stress tests, 8

Structured language, vs. OO, 9–10

Subclasses, 15–25

base class and, 21

inheritance and, 68

Mediator Pattern and, 100

specialization and, 15–16

super class and, 68

subscribe(), 69

448

Index

subscribe(acceptPtr), 113

SubsequentState, 263

Super class

inheritance and, 68

subclass and, 68

Switch case, 157

Switch-case statement, 16

Synchronization, Rendezvous

Pattern and, 226–227

Synchronization Pattern, 153

Synchronization points

definition, 153

tasks and, 154–155

synchronize(), Rendezvous Pattern

and, 227

SynchronizingThread, notify() and,

227

Synchronous communications, 155

Synchronous event transfer, 26

Synchronous events, state machines

and, 270–274

Synchronous state machines, State

Table Pattern and, 299

SynchronousStateMachine, 271

T
TableEntry, 296

TableEntryType, 298

table[stateID][eType], 297

Tasks

communication with, 155

concurrency and, 155

coordination patterns, 182–231

criticality and, 157

for cyclic executive scheduling,

155

definition of, 153

diagrams, 162

identification of, 160–161

preemptive scheduling and,

157–160

priority, 5

RTOS and, 163

synchronization points and,

154–155

waiting by, 156

Task Coordination Pattern, Cyclic

Executive Pattern and, 167

TaskWithCriticalRegion, 183

TaskWithSharedResource, 184

TDD. See Test-driven development

TensPlace, 289

Test buddies, 9

TestBuilder.c, 62–63

TestBuilder.h, 61–62

Test-driven development (TDD), 8

Testing, 8–9

on host, 9

Queue, 21–22

Thermometer, 406–407, 411–412

Thermometer.c, 413

Thermometer.h, 412–413

Thermostat, 406–407

Thermostat.c, 409

Thermostat.h, 407–409

Thread Barrier Pattern, counting

semaphores and, 228

ThreadBarrier.c, 231

ThreadBarrier.h, 229–231

Threads, 153

forks and, 154

joins and, 154

passed by value and, 207

Rendezvous Pattern and, 227

Throughput, 3

as Harmony/ERT criteria, 42

Timed Marked Data queue

(TMDQueue), 52–53

TimedCook event, 262

Time-driven multitasking executive

(TMDE), 156

TimeEvent, 26

Timeliness, 153

Timeouts, 267

Timers, RTOS and, 163

Timescales, for Harmony/ERT, 36

Time-slicing schedule, 156

loops for, 157

timeToCook-=currentTime(), 260

as action, 262

Time-triggered cyclic executive,

156

Tm() event, 27, 262, 267

TMDE. See Time-driven

multitasking executive
TMDQueue. See Timed Marked

Data queue

Abstract Subject and, 68, 69

header file, with Observer

Pattern, 70–74

implementation file, with

Observer Pattern, 74

NotificationHandle and, 69

TMDQueue.c, 56–58

TMDQueue_insert(), 53

TMDQueue_remove(), 58

TMR. See Triple Modular

Redundancy Pattern

TMRClient, 289

Tokenize Async Single Pkg.h,

280–281
Tokenize Async Single

Receptor_task Loop(),
279–280

Tokenize Multi Receptor, 289,

290–292

Tokenize Multi Receptor.c, 296

Tokenize Multi Receptor.h,

292–296
Tokenizer Async Single Receptor,

276–277

Tokenizer Multi Receptor, 288

Tokenizer StateTable, 298, 300–301

init() and, 297

Tokenizer State Table.c, 307

Tokenizer State Table.h, 302–307

Tokenizer Sync Single Receptor,

277

Tokenizer Sync Single

Receptor_event Dispatch(),

274

Tokenize Sync Single Receptor, 274

Tool chain, 4–5

Trade study, 42

Transitions, 263

action list for, 27

definition of, 262

event triggers and, 27

Triggered operations, 27

Triple Modular Redundancy Pattern

(TMR), 418–419

Channel Pattern and, 397

tryLock()

MultimasteredResources and,

235

Mutex and, 234

mutual exclusion semaphores

and, 236

Query Mutex and, 235

semaphores and, 189

449

Index

TSR Client, 277

TSR Event Queue, 277–278

TSR Event Queue.c, 282–284

TSR Event Queue.h, 281–282

TSR Event Queue_post(), 274, 277,

279

TSR Event Queue_pull(), 278

TSR Sync Single Receptor.c, 287

TSR Sync Single Receptor.h,

284–287

TSTATE, 278, 289

TSTATETYPE, 277, 298, 312

TSUBSTATE, 278, 290

TSUBSTATETYPE, 277

U
UltimateO2Adapter.c, 100

UML. See Unified Modeling

Language

Unbounded priority inversion, 160

Unified Modeling Language (UML)

class diagram for, 16–17

concurrency in, 161–163

events in, 26

generalization in, 15

pseudostates in, 268

state explosion and, 266

state machines and, 263–264

statecharts and, 25

union, 275

unmarshal()

for Hardware Proxy class, 88

as Internal Data Formatting

Function, 91

unsigned char

MessageQueue_isEmpty

(MessageQueue* me), 209

unsigned char

MessageQueue_isFull

(MessageQueue* me), 209

unsubscribe(), 69

unsubscribe(acceptPtr), 113

update(), 69

updateData, of SensorThread.c,

219–220

Up-time, reliability and, 359

Urgency, 153

Interrupt Pattern and, 130

tasks and, 157

<<Usage>>, 10

USB, 82

useDefaults(), 268

V

Validation, of Harmony/ERT

design, 44

Value, 183

vectorPtr, 132

VelocitySensor, 248

VelocitySensor.c, 252

VelocitySensor.h, 250–252

Virtual functions, 14–15

inheritance and, 68

void*, for Hardware Proxy class, 87

void reset(void), Rendezvous

Pattern and, 226

void synchronize(void),

Rendezvous Pattern and,

227

Volatile failure, 360

Volume tests, 8

VxWorks, by Wind River, 5, 193

W
WAIT_FOREVER, FLAG and, 193

Waiting, 267

by tasks, 156

WaitingForSelectedStartingPoint,

269

WAIT_TIME, 267

WaveformDisplay, 64, 68

Wind River, VxWorks by, 5, 193

Worst-case execution time, 158–159

Cyclic Executive Pattern and,

164

definition of, 153

Queuing Pattern and, 208

writeMotorSpeed(), as Motor

Control Function, 91

X

XOR, bit-wise operator, 83

Z
ZeroXMotor, 269, 270

ZeroYMotor, 269, 270

450

	Cover
	Design Patterns for Embedded Systems in C
	Copyright
	Contents
	Preface
	Acknowledgements
	About the Author
	Chapter 1 What Is Embedded Programming?
	1.1 What’s Special About Embedded Systems?
	1.2 OO or Structured – It’s Your Choice
	1.3 What Did We Learn?

	Chapter 2 Embedded Programming with The HarmonyTM for EmbeddedRealTime Process
	2.1 Basic Elements of the Harmony Process
	2.2 The Approach
	2.3 What’s Coming Up

	Chapter 3 Design Patterns for Accessing Hardware
	3.1 Basic Hardware Access Concepts
	3.2 Hardware Proxy Pattern
	3.3 Hardware Adapter Pattern
	3.4 Mediator Pattern
	3.5 Observer Pattern
	3.6 Debouncing Pattern
	3.7 Interrupt Pattern
	3.8 Polling Pattern
	3.9 So, What Did We Learn?

	Chapter 4 Design Patterns for Embedding Concurrency and ResourceManagement
	4.1 Basic Concurrency Concepts
	4.2 Cyclic Executive Pattern
	4.3 Static Priority Pattern
	4.4 Critical Region Pattern
	4.5 Guarded Call Pattern
	4.6 Queuing Pattern
	4.7 Rendezvous Pattern
	4.8 Simultaneous Locking Pattern
	4.9 Ordered Locking
	4.10 So, What Have We Learned?

	Chapter 5 Design Patterns for State Machines
	5.1 Oh Behave
	5.2 Basic State Machine Concepts
	5.3 Single Event Receptor Pattern
	5.4 Multiple Event Receptor Pattern
	5.5 State Table Pattern
	5.6 State Pattern
	5.7 AND-States
	5.8 Decomposed AND-State Pattern
	5.9 OK, What Have We Learned?

	Chapter 6 Safety and Reliability Patterns
	6.1 A Little Bit About Safety and Reliability
	6.2 One’s Complement Pattern
	6.3 CRC Pattern
	6.4 Smart Data Pattern
	6.5 Channel Pattern
	6.6 Protected Single Channel Pattern
	6.7 Dual Channel Pattern
	6.8 Summary

	Appendix A UML Notation
	1.1 Class Diagram
	1.2 Sequence Diagram
	1.3 State Diagram

	Index

